1
|
Soweizy M, Taheri P, Tarighi S. Effect of dichloromethanolic fraction obtained from the medicinal plant Scutellaria luteocaerulea on growth, reactive oxygen species, and some virulence factors of Fusarium spp. associated with bread wheat diseases. Microbiol Res 2025; 296:128139. [PMID: 40120564 DOI: 10.1016/j.micres.2025.128139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Dichlomethane (DCM) extract from the roots of Scutellaria luteocaerulea (skullcap) showed in vitro antifungal activity against Fusarium pseudograminearum and Fusarium culmorum, with IC50 values of 550 and 450 μg mL-1, respectively. Additionally, the effects of S. luteocaerulea on hyphal structures of the pathogens, spore germination, and mycelial growth were studied. According to the data obtained, the extract of S. luteocaerulea inhibited spore germination and mycelial growth of both pathogens tested. Additionally, the pathogens hyphae and spores were deformed when treated with the extract of S. luteocaerulea. Induced apoptotic characteristics were detected in both pathogens via the addition of the DCM fraction of S. luteocaerulea into the culture. The DCM fraction of S. luteocaerulea induced the production of reactive oxygen species (ROS) in both pathogens, as a characteristic of apoptosis. Activities of cell wall degrading enzymes (CWDEs) and production of deoxynivalenol (DON) were reduced. Also, the effect of the DCM fraction of S. luteocaerulea was investigated on the severity of Fusarium crown rot (FCR) and Fusarium head blight (FHB) diseases caused by both fungi on bread wheat. Plants treated with the DCM fraction of S. luteocaerulea showed an increased 1000-grain weight and decreased disease progress in greenhouse conditions. High performance liquid chromatography (HPLC) analysis revealed that the fraction had high concentration of wogonin. Therefore, the DCM fraction obtained from S. luteocaerulea could potentially be used in the future to protect wheat plants against F. pseudograminearum and F. culmorum.
Collapse
Affiliation(s)
- Marjan Soweizy
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Zapaśnik A, Bryła M, Sokołowska B, Waśkiewicz A. Pleurotus spp.-an effective way in degradation mycotoxins? A comprehensive review. Mycotoxin Res 2025; 41:1-13. [PMID: 39532821 PMCID: PMC11759470 DOI: 10.1007/s12550-024-00572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Mycotoxins-secondary metabolites produced by filamentous fungal species-occur as a global problem in agriculture due to the reduction in crop quality and the negative effects on human and animal health. There is a need to develop environment-friendly methods of detoxification. In recent years, a number of biological methods for the removal/degradation of mycotoxins have been described. One of them-particularly interesting due to its high effectiveness-is mycoremediation, which involves the ability of Pleurotus spp. mushrooms to remove toxic contaminants from the environment and food. Pleurotus spp. biosynthesizes ligninolytic enzymes, such as laccase and manganese peroxidase that are the main factors of enzymatic degradation of various pollutants, including mycotoxins. The degradation process of mycotoxins (especially aflatoxins) with the participation of isolated enzymes reaches approximately 30-100%, depending on the culture conditions, substrate, and mediators used. In the food industry, their application may include, among others, the detoxification of animal feed from mycotoxins or fermentation products (e.g., juices and wines). While these applications are promising, they require further research to expand toxicological knowledge and optimize their use. This review presents current research on this new and very promising topic related to the use of edible Pleurotus spp. mushrooms in the process of biological degradation of toxic fungal metabolites.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland.
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625, Poznan, Poland
| |
Collapse
|
3
|
Ryszczyńska S, Gumulak-Wołoszyn N, Urbaniak M, Stępień Ł, Bryła M, Twarużek M, Waśkiewicz A. Inhibitory Effect of Sorbus aucuparia Extracts on the Fusarium proliferatum and F. culmorum Growth and Mycotoxin Biosynthesis. Molecules 2024; 29:4257. [PMID: 39275104 PMCID: PMC11396850 DOI: 10.3390/molecules29174257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Fungal infections are among the most common diseases of crop plants. Various species of the Fusarium spp. are naturally prevalent and globally cause the qualitative and quantitative losses of farming commodities, mainly cereals, fruits, and vegetables. In addition, Fusarium spp. can synthesize toxic secondary metabolites-mycotoxins under high temperature and humidity conditions. Among the strategies against Fusarium spp. incidence and mycotoxins biosynthesis, the application of biological control, specifically natural plant extracts, has proved to be one of the solutions as an alternative to chemical treatments. Notably, rowanberries taken from Sorbus aucuparia are a rich source of phytochemicals, such as vitamins, carotenoids, flavonoids, and phenolic acids, as well as minerals, including iron, potassium, and magnesium, making them promising candidates for biological control strategies. The study aimed to investigate the effect of rowanberry extracts obtained by supercritical fluid extraction (SFE) under different conditions on the growth of Fusarium (F. culmorum and F. proliferatum) and mycotoxin biosynthesis. The results showed that various extracts had different effects on Fusarium growth as well as ergosterol content and mycotoxin biosynthesis. These findings suggest that rowanberry extracts obtained by the SFE method could be a natural alternative to synthetic fungicides for eradicating Fusarium pathogens in crops, particularly cereal grains. However, more research is necessary to evaluate their efficacy against other Fusarium species and in vivo applications.
Collapse
Affiliation(s)
- Sylwia Ryszczyńska
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Natalia Gumulak-Wołoszyn
- Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Kraków, Aleja 29 Listopada 46, 31-425 Kraków, Poland
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
4
|
Modrzewska M, Popowski D, Błaszczyk L, Stępień Ł, Urbaniak M, Bryła M, Cramer B, Humpf HU, Twarużek M. Antagonistic properties against Fusarium sporotrichioides and glycosylation of HT-2 and T-2 toxins by selected Trichoderma strains. Sci Rep 2024; 14:5865. [PMID: 38467671 PMCID: PMC10928170 DOI: 10.1038/s41598-024-55920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
The present study assessed the ability of Trichoderma to combat F. sporotrichioides, focusing on their antagonistic properties. Tests showed that Trichoderma effectively inhibited F. sporotrichioides mycelial growth, particularly with T. atroviride strains. In co-cultures on rice grains, Trichoderma almost completely reduced the biosynthesis of T-2 and HT-2 toxins by Fusarium. T-2 toxin-α-glucoside (T-2-3α-G), HT-2 toxin-α-glucoside (HT-2-3α-G), and HT-2 toxin-β-glucoside (HT-2-3β-G) were observed in the common culture medium, while these substances were not present in the control medium. The study also revealed unique metabolites and varying metabolomic profiles in joint cultures of Trichoderma and Fusarium, suggesting complex interactions. This research offers insights into the processes of biocontrol by Trichoderma, highlighting its potential as a sustainable solution for managing cereal plant pathogens and ensuring food safety.
Collapse
Affiliation(s)
- Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lidia Błaszczyk
- Plant Microbiomics Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland.
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Natural Sciences, Institute of Experimental Biology, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| |
Collapse
|
5
|
Uwineza PA, Urbaniak M, Stępień Ł, Gramza-Michałowska A, Waśkiewicz A. Efficacy of Lamium album as a natural fungicide: impact on seed germination, ergosterol, and mycotoxins in Fusarium culmorum-infected wheat seedlings. Front Microbiol 2024; 15:1363204. [PMID: 38463484 PMCID: PMC10920328 DOI: 10.3389/fmicb.2024.1363204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Fusarium culmorum is a major wheat pathogen, and its secondary metabolites (mycotoxins) cause damage to plants, animals, and human health. In the era of sustainable agriculture, eco-friendly methods of prevention and control are constantly needed. The use of plant extracts as biocontrol agents has gained popularity as they are a source of active substances that play a crucial role in fighting against phytopathogens. This study evaluated the impact of Lamium album on wheat seed germination and seedling growth. In a pot experiment, the effect of L. album on wheat seedlings artificially inoculated with F. culmorum was evaluated by measuring seedling growth parameters, and by using chromatographic methods, ergosterol and mycotoxins levels were analyzed. The results showed that the phytotoxic effect of L. album flower extracts on wheat seed germination and seedling growth was concentration dependent. The radicle length was also reduced compared to the control; however, L. album did not significantly affect the dry weight of the radicle. A slight phytotoxic effect on seed germination was observed, but antifungal effects on artificially infected wheat seedlings were also confirmed with the reduction of ergosterol level and mycotoxins accumulation in the roots and leaves after 21 days of inoculation. F. culmorum DNA was identified in the control samples only. Overall, this study is a successful in planta study showing L. album flower extract protection of wheat against the pathogen responsible for Fusarium crown and root rot. Further research is essential to study the effects of L. album extracts on key regulatory genes for mycotoxin biosynthetic pathways.
Collapse
Affiliation(s)
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | | |
Collapse
|
6
|
Uwineza PA, Urbaniak M, Stępień Ł, Gramza-Michałowska A, Waśkiewicz A. Lamium album Flower Extracts: A Novel Approach for Controlling Fusarium Growth and Mycotoxin Biosynthesis. Toxins (Basel) 2023; 15:651. [PMID: 37999514 PMCID: PMC10675686 DOI: 10.3390/toxins15110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Lamium album is a medicinal flowering plant that is rich in bioactive compounds with various biological properties. Fusarium species, known for causing significant crop losses and mycotoxin contamination, pose threats to food safety and human health. While synthetic fungicides are commonly employed for fungal management, their environmental impact prompts the ongoing development of alternative methods. This study aimed to evaluate the efficacy of L. album flower extracts in inhibiting the in vitro growth and biosynthesis of mycotoxins by Fusarium culmorum and F. proliferatum strains. The extracts were obtained by supercritical fluid extraction using CO2 (SC-CO2). The effects of various concentrations (2.5, 5, 7.5, and 10%) were assessed on a potato dextrose agar (PDA) medium using the "poisoning" technique. L. album flower extracts reduced mycelium growth by 0 to 30.59% for F. culmorum and 27.71 to 42.97% for F. proliferatum. Ergosterol content was reduced by up to 88.87% for F. culmorum and 93.17% for F. proliferatum. Similarly, the amounts of synthesized mycotoxins produced by both strains were also lower compared to control cultures. These findings are a preliminary phase for further in vivo tests planned to determine the fungistatic effect of L. album flower extracts on cereal substrates as seedlings incubated in controlled environments and under field conditions. Their phytotoxicity and biological stability, as well as the possibility of formulating a bio-preparation to protect cereals against Fusarium infections, will be evaluated.
Collapse
Affiliation(s)
- Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| | - Monika Urbaniak
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (Ł.S.)
| | - Łukasz Stępień
- Pathogen Genetics and Plant Resistance Department, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.U.); (Ł.S.)
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland;
| |
Collapse
|
7
|
Fan K, Qian S, Zhang Z, Huang Q, Hu Z, Nie D, Meng J, Guo W, Zhao Z, Han Z. Recent advances in the combinations of plant-sourced natural products for the prevention of mycotoxin contamination in food. Crit Rev Food Sci Nutr 2023; 64:10626-10642. [PMID: 37357923 DOI: 10.1080/10408398.2023.2227260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mycotoxins, secondary metabolites produced by mycotoxigenic fungi, are a major problem affecting food safety and security, because of their adverse health effects, their socio-economic impact and the difficulty of degradation or removal by conventional food processing methods. Plant-sourced natural products are a novel and effective control method for fungal infestation and mycotoxin production, with the advantages of biodegradability and acceptability for food use. However, development of resistance, low and inconsistent efficacy, and a limited range of antifungal activities hinder the effective application of single plant natural products for controlling mycotoxin contamination. To overcome these limitations, combinations of plant natural products have been tested extensively and found to increase efficacy, often synergistically. However, this extensive and promising research area has seen little development of practical applications. This review aims to provide up-to-date information on the antifungal, anti-mycotoxigenic and synergistic effects of combinations of plant natural products, as well as their mechanisms of action, to provide a reference source for future research and encourage application development.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shenan Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Plant Metabolites Affect Fusarium proliferatum Metabolism and In Vitro Fumonisin Biosynthesis. Int J Mol Sci 2023; 24:ijms24033002. [PMID: 36769333 PMCID: PMC9917803 DOI: 10.3390/ijms24033002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Fusarium proliferatum is a common hemi-biotrophic pathogen that infect a wide range of host plants, often leading to substantial crop loss and yield reduction. F. proliferatum synthesizes various mycotoxins, and fumonisins B are the most prevalent. They act as virulence factors and specific effectors that elicit host resistance. The effects of selected plant metabolites on the metabolism of the F. proliferatum strain were analyzed in this study. Quercetin-3-glucoside (Q-3-Glc) and kaempferol-3-rutinoside (K-3-Rut) induced the pathogen's growth, while DIMBOA, isorhamnetin-3-O-rutinoside (Iso-3-Rut), ferulic acid (FA), protodioscin, and neochlorogenic acid (NClA) inhibited fungal growth. The expression of seven F. proliferatum genes related to primary metabolism and four FUM genes was measured using RT-qPCR upon plant metabolite addition to liquid cultures. The expression of CPR6 and SSC1 genes was induced 24 h after the addition of chlorogenic acid (ClA), while DIMBOA and protodioscin reduced their expression. The transcription of FUM1 on the third day of the experiment was increased by all metabolites except for Q-3-Glc when compared to the control culture. The expression of FUM6 was induced by protodioscin, K-3-Rut, and ClA, while FA and DIMBOA inhibited its expression. FUM19 was induced by all metabolites except FA. The highest concentration of fumonisin B1 (FB1) in control culture was 6.21 µg/mL. Protodioscin did not affect the FB content, while DIMBOA delayed their synthesis/secretion. Flavonoids and phenolic acids displayed similar effects. The results suggest that sole metabolites can have lower impacts on pathogen metabolism and mycotoxin synthesis than when combined with other compounds present in plant extracts. These synergistic effects require additional studies to reveal the mechanisms behind them.
Collapse
|
9
|
Trichoderma versus Fusarium-Inhibition of Pathogen Growth and Mycotoxin Biosynthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238146. [PMID: 36500242 PMCID: PMC9735881 DOI: 10.3390/molecules27238146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
This study evaluated the ability of selected strains of Trichoderma viride, T. viridescens, and T. atroviride to inhibit mycelium growth and the biosynthesis of mycotoxins deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN), α-(α-ZOL) and β-zearalenol (β-ZOL) by selected strains of Fusarium culmorum and F. cerealis. For this purpose, an in vitro experiment was carried out on solid substrates (PDA and rice). After 5 days of co-culture, it was found that all Trichoderma strains used in the experiment significantly inhibited the growth of Fusarium mycelium. Qualitative assessment of pathogen-antagonist interactions showed that Trichoderma colonized 75% to 100% of the medium surface (depending on the species and strain of the antagonist and the pathogen) and was also able to grow over the mycelium of the pathogen and sporulate. The rate of inhibition of Fusarium mycelium growth by Trichoderma ranged from approximately 24% to 66%. When Fusarium and Trichoderma were co-cultured on rice, Trichoderma strains were found to inhibit DON biosynthesis by about 73% to 98%, NIV by about 87% to 100%, and ZEN by about 12% to 100%, depending on the pathogen and antagonist strain. A glycosylated form of DON was detected in the co-culture of F. culmorum and Trichoderma, whereas it was absent in cultures of the pathogen alone, thus suggesting that Trichoderma is able to glycosylate DON. The results also suggest that a strain of T. viride is able to convert ZEN into its hydroxylated derivative, β-ZOL.
Collapse
|
10
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
11
|
Rashad EM, Shaheen DM, Al-Askar AA, Ghoneem KM, Arishi AA, Hassan ESA, Saber WIA. Seed Endophytic Achromobacter sp. F23KW as a Promising Growth Promoter and Biocontrol of Rhizoctonia Root Rot of Fenugreek. Molecules 2022; 27:5546. [PMID: 36080312 PMCID: PMC9457590 DOI: 10.3390/molecules27175546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Root rot is one of the most significant soil and seed-borne fungal diseases, limiting the cultivation of fenugreek plants. Endophytic bacteria and their natural bioproducts have emerged as growth promoters and disease suppressors in the current era. Despite limited research, seeds are a good funder of endophytic microbiomes, which are transmitted from them to other seedling parts, thereby providing a shield against biotic and abiotic anxiety and promoting the growth at early germination and later stages. The current study evaluated the hypothesis that seed endophytic bacteria and their lytic enzymes, growth promotors, and antifungal molecules can induce growth, and inhibit root rot disease development at the same time. The isolation trial from fenugreek seeds revealed a lytic Achromobacter sp., which produces indole acetic acid, has antifungal compounds (e.g., 2-Butanol, 3,3'-oxybis-), and reduces the growth of Rhizoctonia solani by 43.75%. Under the greenhouse and natural field conditions, bacterial cells and/or supernatant improved the growth, physiology, and yield performance of fenugreek plants, and effectively suppressed the progress of root rot disease; this is the first extensive study that uses a new seed-borne endophytic bacterium as a plant-growth-promoting, and biocontrol tool against the sclerotia-forming; R. solani; the causative of fenugreek root rot.
Collapse
Affiliation(s)
- Ehsan M. Rashad
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Dalia M. Shaheen
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - El Sayed A. Hassan
- Seed Technology Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|