1
|
Barker A, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Snake Venom Makeover: Age-Dependent Variations in Procoagulant Biochemistry of Egyptian Saw-Scaled Viper ( Echis pyramidum pyramidum) Venom. Toxins (Basel) 2025; 17:149. [PMID: 40137922 PMCID: PMC11946080 DOI: 10.3390/toxins17030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Echis species (saw-scaled vipers) are WHO Category 1 medically significant venomous snakes with potent procoagulant venoms, which cause lethal venom-induced consumptive coagulopathy in human victims. Despite clinical presentations of bites varying significantly between individuals within the same species, the contribution of age-related changes in the venom biochemistry has not been investigated. This study investigated the ontogenetic changes in Echis pyramidum pyramidum venom and its impact on therapeutic efficacy. The efficacy of various antivenoms (Echitab, Echitab+ ICP, Inosan MENA, Inosan Pan African, and SAVP-Echis) was tested against both venom phenotypes. While both neonate and adult venoms were procoagulant, there were differences in the underlying biochemistry. Neonate venom was found to potently pathophysiologically activate Factor VII and Factor X, and to a lesser degree Factor XII. In contrast, adult venom was a slower clotter, less potent in activating FVII, equipotent with neonate venom on FXII, and inactive on FX. This is the first documentation of FVII and FXII activation for any Echis venom. The significant ontogenetic toxicological variations in Echis species were shown to impact antivenom efficacy. Among the tested antivenoms, SAVP-Echis was the most effective against both venom phenotypes, with adult venom being better neutralized. These findings suggest the need for a reconsideration of venom mixture selection in antivenom production through the inclusion of neonate venom. Additionally, the results indicate differential ontogenetic predatory ecology, providing a foundation for future natural history investigations.
Collapse
Affiliation(s)
- Alex Barker
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory srl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory srl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (A.B.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
2
|
Alfaro-Chinchilla A, Lomonte B, Zúniga L, Acevedo M, Neri-Castro E, Alagón A, Bonilla F, Diaz C, Sasa M. Venom composition, toxicity and cross-neutralization by PoliVal-ICP antivenom, of Mesoamerican jumping pitvipers genus Metlapilcoatlus (Viperidae: Crotalinae). Trans R Soc Trop Med Hyg 2025:trae120. [PMID: 39749528 DOI: 10.1093/trstmh/trae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The genus Metlapilcoatlus was recently erected to include six species of stout venomous snakes, known as the jumping pitvipers, which inhabit mountainous areas of Mesoamerica. This group maintains affinity with Atropoides picadoi, another jumping pitviper with restricted distribution in Costa Rica and Panama. Although the venom of A. picadoi and a couple of Metlapilcoatlus species has previously been characterized, little is known about the interspecific and intraspecific variation of the other species that comprise the genus. In this work, we characterize the venoms of five out of the six species that make up the genus Metlapilcoatlus: Metlapilcoatlus indomitus, Metlapilcoatlus mexicanus, Metlapilcoatlus nummifer, Metlapilcoatlus occiduus and Metlapilcoatlus olmec, and for three of them, we analyze whether ontogenetic change occurs in the composition of their venoms. Additionally, we evaluated the cross-neutralizing capacity of the antivenom PoliVal-ICP used in Central American countries to treat viper envenomation. METHODS We utilized sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse-phase HPLC for venom characterization. Toxin identification was conducted using a bottom-up shotgun proteomic approach. We also estimated venom toxicity based on average lethality estimates in a murine model. The PoliVal-ICP neutralizing capacity on lethal activity was evaluated for all venoms. Using the venom of M. mexicanus as a model, we also tested the neutralizing capacity of this antivenom on hemorrhagic, myotoxic, proteolytic, phospholipase and coagulant activities. RESULTS Our analysis revealed that the venoms of jumping vipers are composed of proteins belonging to approximately 8-17 families, typically shared with other crotalines. Despite these general similarities, we observed variations at both intraspecific, including ontogenetic, and interspecific levels in venom composition and toxicity. The chromatographic pattern of Metlapilcoatlus venom exhibited peaks in the PLA2/PLA2-like eluting region, likely responsible for the myotoxic activity of these venoms. By contrast, these peaks were almost negligible in the chromatogram of A. picadoi, whose venom is significantly more hemorrhagic. Among the Metlapilcoatlus species, M. indomitus venom stood out as notably different from the others, and it was also the most lethal. The antivenom demonstrated its effectiveness in neutralizing the lethal activity of all the venoms tested, as well as the various biological activities studied in the venom of M. mexicanus. CONCLUSIONS Beyond the scope of the variation revealed here, our preclinical results demonstrate that PoliVal-ICP antivenom effectively neutralizes toxins from the venom of all Mesoamerican jumping vipers, despite not including venom from any of them in its immunization mixture. This cross-neutralization capacity predicts ICP antivenom's effectiveness in treating snake envenoming in the Neotropical region.
Collapse
Affiliation(s)
- Adriana Alfaro-Chinchilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Luis Zúniga
- Centro Nacional de Conservación y Recuperación de Especies Rosy Walther. Tegucigalpa, Honduras
| | - Manuel Acevedo
- Museo Nacional de Historia Natural Jorge A. Ibarra, 6ª. Calle 7-30 zona 13, Finca La Aurora, Ciudad de Guatemala, Guatemala
| | - Edgar Neri-Castro
- Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n. Fracc. Filadelfia, C. P. 35010 Gómez Palacio, Dgo., México
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C. P. 62210 Cuernavaca, Mor., México
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, C. P. 62210 Cuernavaca, Mor., México
| | - Fabian Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Cecilia Diaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica
| |
Collapse
|
3
|
Kempson K, Chowdhury A, Violette A, Fourmy R, Soria R, Fry BG. Age Is Just a Number: Ontogenetic Conservation in Activation of Blood Clotting Factors VII, X, and XII by Caucasus Blunt-Nosed Viper ( Macrovipera lebetina obtusa) Venoms. Toxins (Basel) 2024; 16:520. [PMID: 39728778 PMCID: PMC11728708 DOI: 10.3390/toxins16120520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
This study examined the pathophysiological effects of venoms from neonate and adult specimens of the viperid snake Macrovipera lebetina obtusa, focusing on their ability to activate various blood clotting factors in human plasma. All venoms exhibited strong procoagulant properties. In concentration-response tests, the clotting potency of the neonate venoms fell within the range of their parents' maximum clotting velocities and areas under the curve. Intriguingly, females were more potent than males within each age group, but this requires a larger sample size to confirm. Antivenom neutralization efficacy was equipotent across age groups. The venoms potently activated Factor X (FX) robustly, consistent with previous knowledge of this genus. For the first time, the ability to activate Factors VII (FVII) and XII (FXII) was identified in this genus, with FXII exhibiting particularly strong activation. The study found no significant ontogenetic variation in procoagulant venom potency on human plasma, convergent with the Daboia genus, the other large-bodied lineage within the Palearctic viperid clade. However, the activation of FXII and FVII reveals previously undocumented pathways in the procoagulant activity of these venoms, contributing to the broader understanding of venom evolution and its clinical impacts. These findings have implications for venom biodiscovery and the development of antivenoms, highlighting the complexity of clotting factor activation beyond traditional investigations that have myopically focused upon FX and prothrombin pathways, thereby underscoring the importance of exploring additional clotting factors.
Collapse
Affiliation(s)
- Katrina Kempson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
- Biomedical Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium; (A.V.); (R.F.)
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (K.K.); (A.C.)
| |
Collapse
|
4
|
Chowdhury A, Fry BG, Samuel SP, Bhalla A, Vaiyapuri S, Bhargava P, Carter RW, Lewin MR. In vitro anticoagulant effects of Bungarus venoms on human plasma which are effectively neutralized by the PLA 2-inhibitor varespladib. Toxicon 2024; 252:108178. [PMID: 39547452 DOI: 10.1016/j.toxicon.2024.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bungarus (krait) envenomings are well-known for their life-threatening neurotoxic effects. However, their impact on coagulation remains largely unexplored experimentally or clinically. This study, examined the effect of begins to examine venoms from four Bungarus species-B. caeruleus, B. candidus, B. fasciatus, and B. flaviceps on human platelet poor plasma coagulation parameters using thromboelastography and coagulation inhibition assays. B. flaviceps completely inhibited clotting, while B. caeruleus only delayed clot formation. In contrast, B. candidus and B. fasciatus did not affect clotting. Subsequent examinations into the anticoagulant biochemical mechanisms demonstrated divergent pathophysiological pathways. B. caeruleus venom anticoagulant effects were prevented by the addition of an excess of phospholipids, with anticoagulation thereby the result of phospholipid depletion. In contrast B. flaviceps anticoagulation was not affected by the addition of an excess of phospholipids. Further investigations demonstrated that B. flaviceps mediates its anticoagulant toxicity through the inactivation of coagulation enzymes. The anticoagulant effects of both B. flaviceps and B. caeruleus were nullified by varespladib, a phospholipase A2 (PLA2) inhibitor, revealing the toxin class involved. These results uncover previously unrecognized and unexplored anticoagulant effects of Bungarus venoms.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Stephen P Samuel
- Ophirex, Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA
| | - Ashish Bhalla
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Parul Bhargava
- Department of Pathology and Laboratory Medicine, University of San Francisco, California, USA
| | | | - Matthew R Lewin
- Ophirex, Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA.
| |
Collapse
|
5
|
Jones L, Lay M, Neri-Castro E, Zarzosa V, Hodgson WC, Lewin M, Fry BG. Breaking muscle: neurotoxic and myotoxic effects of Central American snake venoms and the relative efficacies of antivenom and varespladib. BMC Biol 2024; 22:243. [PMID: 39443999 PMCID: PMC11515554 DOI: 10.1186/s12915-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The snake genera Atropoides, Cerrophidion, and Metlapilcoatlus form a clade of neotropical pit vipers distributed across Mexico and Central America. This study evaluated the myotoxic and neurotoxic effects of nine species of Atropoides, Cerrophidion, and Metlapilcoatlus, and the neutralising efficacy of the ICP antivenom from Costa Rica against these effects, in the chick biventer cervicis nerve-muscle preparation. Given the prominence of PLA2s within the venom proteomes of these species, we also aimed to determine the neutralising potency of the PLA2 inhibitor, varespladib. RESULTS All venoms showed myotoxic and potential neurotoxic effects, with differential intra-genera and inter-genera potency. This variation was also seen in the antivenom ability to neutralise the muscle damaging pathophysiological effects observed. Variation was also seen in the relative response to the PLA2 inhibitor varespladib. While the myotoxic effects of M. mexicanus and M. nummifer venoms were effectively neutralised by varespladib, indicating myotoxicity is PLA2 mediated, those of C. godmani and M. olmec venoms were not, revealing that the myotoxicity is driven by non-PLA2 toxin types. CONCLUSIONS This study characterises the myotoxic and neurotoxic venom activity, as well as neutralisation of venom effects from the Atropoides, Cerrophidion, and Metlapilcoatlus clade of American crotalids. Our findings contribute significant clinical and evolutionary knowledge to a clade of poorly researched snakes. In addition, these results provide a platform for future research into the reciprocal interaction between ecological niche specialisation and venom evolution, as well as highlighting the need to test purified toxins to accurately evaluate the potential effects observed in these venoms.
Collapse
Affiliation(s)
- Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mimi Lay
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Investigador Por México, CONAHCYT, Universidad Juárez del Estado de Durango, Avenida Universidad S/N. Fracc. Filadelfia, Gómez Palacio, Dgo.,, C.P. 35010, México
| | - Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Mexico
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | | | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Chandrasekara U, Chowdhury A, Seneci L, Zdenek CN, Dunstan N, Fry BG. From Venom to Vein: Factor VII Activation as a Major Pathophysiological Target for Procoagulant Australian Elapid Snake Venoms. Toxins (Basel) 2024; 16:430. [PMID: 39453206 PMCID: PMC11510989 DOI: 10.3390/toxins16100430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Australian elapid snake venoms are uniquely procoagulant, utilizing blood clotting enzyme Factor Xa (FXa) as a toxin, which evolved as a basal trait in this clade. The subsequent recruitment of Factor Va (FVa) as a toxin occurred in the last common ancestor of taipans (Oxyuranus species) and brown snakes (Pseudonaja species). Factor II (prothrombin) activation has been stated as the primary mechanism for the lethal coagulopathy, but this hypothesis has never been tested. The additional activation of Factor VII (FVII) by Oxyuranus/Pseudonaja venoms has historically been considered as a minor, unimportant novelty. This study aimed to investigate the significance of toxic FVII activation relative to prothrombin activation by testing a wide taxonomical range of Australian elapid species with procoagulant venoms. The activation of FVII or prothrombin, with and without the Factor Va as a cofactor, was assessed, along with the structural changes involved in these processes. All procoagulant species could activate FVII, establishing this as a basal trait. In contrast, only some lineages could activate prothrombin, indicating that this is a derived trait. For species able to activate both zymogens, Factor VII was consistently more strongly activated than prothrombin. FVa was revealed as an essential cofactor for FVII activation, a mechanism previously undocumented. Species lacking FVa in their venom utilized endogenous plasma FVa to exert this activity. The ability of the human FXa:FVa complex to activate FVII was also revealed as a new feedback loop in the endogenous clotting cascade. Toxin sequence analyses identified structural changes essential for the derived trait of prothrombin activation. This study presents a paradigm shift in understanding how elapid venoms activate coagulation factors, highlighting the critical role of FVII activation in the pathophysiological effects upon the coagulation cascade produced by Australian elapid snake venoms. It also documented the novel use of Factor Va as a cofactor for FVII activation for both venom and endogenous forms of FXa. These findings are crucial for developing better antivenoms and treatments for snakebite victims and have broader implications for drug design and the treatment of coagulation disorders. The research also advances the evolutionary biology knowledge of snake venoms.
Collapse
Affiliation(s)
- Uthpala Chandrasekara
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (U.C.); (A.C.); (L.S.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (U.C.); (A.C.); (L.S.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (U.C.); (A.C.); (L.S.)
| | - Christina N. Zdenek
- School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Nathan Dunstan
- Venom Supplies Pty Ltd., Stonewell Rd., Tanunda, SA 5352, Australia;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (U.C.); (A.C.); (L.S.)
| |
Collapse
|
7
|
Qiao Z, Jones L, Bourke LA, Seneci L, Chowdhury A, Violette A, Fourmy R, Soria R, Aldridge M, Fry BG. Tiny but Mighty: Vipera ammodytes meridionalis (Eastern Long-Nosed Viper) Ontogenetic Venom Variations in Procoagulant Potency and the Impact on Antivenom Efficacies. Toxins (Basel) 2024; 16:396. [PMID: 39330854 PMCID: PMC11436208 DOI: 10.3390/toxins16090396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult venom phenotypes. We also examined the efficacy of three antivenoms-Viperfav, ViperaTAb, and Inoserp Europe-across our neonate and adult venom samples. While both neonate and adult V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII > Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more activated than Factor VII, and both much more so than Factor X. This adds to the growing body of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight a previously undocumented ontogenetic shift, likely driven by the documented difference in prey preference observed for this species across age classes.
Collapse
Affiliation(s)
- Zichen Qiao
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lee Jones
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lachlan A. Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Lorenzo Seneci
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| | - Aude Violette
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Rudy Fourmy
- Alphabiotoxine Laboratory Sprl, Barberie 15, 7911 Montroeul-au-Bois, Belgium; (A.V.); (R.F.)
| | - Raul Soria
- Inosan Biopharma, 28108 Alcobendas, Madrid, Spain;
| | | | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St. Lucia, QLD 4072, Australia; (Z.Q.); (L.J.); (L.A.B.); (L.S.); (A.C.)
| |
Collapse
|
8
|
Coimbra FCP, Sanchez EE, Lomonte B, Gutiérrez JM, Calvete JJ, Fry BG. Blood Lines: Intraspecific and Interspecific Variations in Anticoagulant Actions of Agkistrodon Viperid Venoms. Toxins (Basel) 2024; 16:291. [PMID: 39057931 PMCID: PMC11281148 DOI: 10.3390/toxins16070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the intraspecific and interspecific variability in the venom effects of Agkistrodon viperid snake species and subspecies (eleven venoms total) on plasma clotting times, fibrinogen levels, and fibrin clot strength. Significant delays in plasma clotting time were observed for A. conanti, A. contortrix mokasen, A. contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and A. piscivorus piscivorus. Notably, the phylogenetically disjunct lineages A. conanti, A. contortrix mokasen, and A. howardgloydi exhibited the most potent anticoagulant effects, indicating the independent amplification of a basal trait. Inhibition assays with the activated clotting enzymes Factors XIa, IXa, Xa, and IIa (thrombin) revealed that FXa inhibition is another basal trait amplified independently on multiple occasions within the genus, but with A. howardgloydi, notably more potent than all others. Phospholipid degradation and zymogen destruction were identified as mechanisms underlying the variability in venom effects observed experimentally and in previous clinical reports. Thromboelastography demonstrated that the venoms did not clot fibrinogen directly but affected fibrin clot strength by damaging fibrinogen and that thrombin was subsequently only able to cleave into weak, unstable clots. The ability to activate Protein C, an endogenous anticoagulant enzyme, varied across species, with some venoms exceeding that of A. contortrix contortrix, which previously yielded the protein diagnostic agent Protac®. Phylogenetic analysis suggested that both fibrinogen degradation and Protein C activation were each amplified multiple times within the genus, albeit with negative correlation between these two modes of action. This study highlights the evolutionary, clinical, and biodiscovery implications of venom variability in the Agkistrodon species, underscoring their dynamic evolution, emphasising the need for tailored clinical approaches, and highlighting the potential for novel diagnostic and therapeutic developments inspired by the unique properties of snake venoms.
Collapse
Affiliation(s)
- Francisco C. P. Coimbra
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Elda E. Sanchez
- National Natural Toxins Research Center, Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA;
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (B.L.); (J.M.G.)
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (B.L.); (J.M.G.)
| | - Juan J. Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
9
|
Dobson J, Chowdhury A, Tai-A-Pin J, van der Ploeg H, Gillett A, Fry BG. The Clot Thickens: Differential Coagulotoxic and Cardiotoxic Activities of Anguimorpha Lizard Venoms. Toxins (Basel) 2024; 16:283. [PMID: 38922177 PMCID: PMC11209219 DOI: 10.3390/toxins16060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Despite their evolutionary novelty, lizard venoms are much less studied in comparison to the intense research on snake venoms. While the venoms of helodermatid lizards have long been assumed to be for defensive purposes, there is increasing evidence of toxic activities more useful for predation than defence (such as paralytic neurotoxicity). This study aimed to ascertain the effects of Heloderma, Lanthanotus, and Varanus lizard venoms on the coagulation and cardiovascular systems. Anticoagulant toxicity was demonstrated for the Varanus species studied, with the venoms prolonging clotting times in human and bird plasma due to the destructive cleavage of fibrinogen. In contrast, thromboelastographic analyses on human and bird plasmas in this study demonstrated a procoagulant bioactivity for Heloderma venoms. A previous study on Heloderma venom using factor-depleted plasmas as a proxy model suggested a procoagulant factor was present that activated either Factor XI or Factor XII, but could not ascertain the precise target. Our activation studies using purified zymogens confirmed FXII activation. Comparisons of neonate and adult H. exasperatum, revealed the neonates to be more potent in the ability to activate FXII, being more similar to the venom of the smaller species H. suspectum than the adult H. exasperatum. This suggests potent FXII activation a basal trait in the genus, present in the small bodied last common ancestor. This also indicates an ontogenetic difference in prey preferences in the larger Heloderma species paralleing the change in venom biochemistry. In addition, as birds lack Factor XII, the ability to clot avian plasma suggested an additional procoagulant site of action, which was revealed to be the activation of Factor VII, with H. horridum being the most potent. This study also examined the effects upon the cardiovascular system, including the liberation of kinins from kininogen, which contributes to hypotension induction. This form of toxicity was previously described for Heloderma venoms, and was revealed in this study was to also be a pathophysiological effect of Lanthanotus and Varanus venoms. This suggests that this toxic activity was present in the venom of the last common ancestor of the anguimorph lizards, which is consistent with kallikrein enzymes being a shared toxin trait. This study therefore uncovered novel actions of anguimorph lizard venoms, not only contributing to the evolutionary biology body of knowledge but also revealing novel activities to mine for drug design lead compounds.
Collapse
Affiliation(s)
- James Dobson
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | - Abhinandan Chowdhury
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| | | | - Harold van der Ploeg
- Working Group Adder Research Netherlands, RAVON, 6525 ED Nijmegen, The Netherlands;
| | - Amber Gillett
- FaunaVet Wildlife Consultancy, Glass House Mountains, QLD 4518, Australia;
| | - Bryan G. Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD 4072, Australia; (J.D.); (A.C.)
| |
Collapse
|
10
|
Bourke LA, Zdenek CN, Huynh TM, Hodgson WC, Alagón A, Castro EN, Jones J, Fry BG. Fangs and foliage: Unearthing the haemotoxic secrets of cannabis-dwelling rattlesnakes. Toxicon 2024; 244:107756. [PMID: 38740096 DOI: 10.1016/j.toxicon.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Despite a recent surge in high-throughput venom research that has enabled many species to be studied, some snake venoms remain understudied. The long-tailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri) are one group where such research lags, largely owing to the rarity of these snakes and the hazardous areas, ripe with drug (marijuana and opium) production, they inhabit in Mexico. To fill this knowledge gap, we used multiple functional assays to examine the coagulotoxic (including across different plasma types), neurotoxic, and myotoxic activity of the venom of the long-tailed rattlesnakes. All crude venoms were shown to be potently anticoagulant on human plasma, which we discovered was not due to the destruction of fibrinogen, except for C. stejnegeri displaying minor fibrinogen destruction activity. All venoms exhibited anticoagulant activity on rat, avian, and amphibian plasmas, with C. ericsmithi being the most potent. We determined the mechanism of anticoagulant activity by C. ericsmithi and C. lannomi venoms to be phospholipid destruction and inhibition of multiple coagulation factors, leading to a net disruption of the clotting cascade. In the chick biventer assay, C. ericsmithi and C. lannomi did not exhibit neurotoxic activity but displayed potential weak myotoxic activity. BIRMEX® (Faboterápico Polivalente Antiviperino) antivenom was not effective in neutralising this venom effect. Overall, this study provides an in-depth investigation of venom function of understudied long-tailed rattlesnakes and provides a springboard for future venom and ecology research on the group.
Collapse
Affiliation(s)
- Lachlan A Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tam M Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wayne C Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, 62210, Mexico
| | - Edgar N Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, 62210, Mexico; Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Jason Jones
- Herp.mx A.C, Villa Del Álvarez, Colima, Mexico
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
11
|
Chang Estrada JE, Guerrero TN, Reyes-Enríquez DF, Nardy ES, Guimarães Ferreira R, Ruiz Calderón CJ, Wellmann IA, Monteiro Espíndola KM, do Prado AF, Soares AM, Fontes MRDM, Chagas Monteiro M, Zingali RB. Potential Biotechnological Applications of Venoms from the Viperidae Family in Central America for Thrombosis. Toxins (Basel) 2024; 16:142. [PMID: 38535808 PMCID: PMC10975971 DOI: 10.3390/toxins16030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 04/25/2025] Open
Abstract
Central America is home to one of the most abundant herpetofauna in the Americas, occupying only 7% of the continent's total area. Vipers and lizards are among the most relevant venomous animals in medical practice due to the consequences of envenomation from the bite of these animals. A great diversity of biomolecules with immense therapeutic and biotechnological value is contained in their venom. This paper describes the prominent leading representatives of the family Viperidae, emphasizing their morphology, distribution, habitat, feeding, and venom composition, as well as the biotechnological application of some isolated components from the venom of the animals from these families, focusing on molecules with potential anti-thrombotic action. We present the leading protein families that interfere with blood clotting, platelet activity, or the endothelium pro-thrombotic profile. In conclusion, Central America is an endemic region of venomous animals that can provide many molecules for biotechnological applications.
Collapse
Affiliation(s)
- Jorge Eduardo Chang Estrada
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Taissa Nunes Guerrero
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Daniel Fernando Reyes-Enríquez
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Erica Santos Nardy
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| | - Roseane Guimarães Ferreira
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Cristian José Ruiz Calderón
- Department of Biochemistry and Microbiology, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala;
| | - Irmgardt A. Wellmann
- Postgraduate Program in Tropical Medicine, State University of Amazonas, Manaus 69005-010, AM, Brazil;
- Faculty of Medical Sciences, Universidad de San Carlos de Guatemala, Guatemala City 01015, Guatemala
| | - Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Andreimar Martins Soares
- Laboratory of Biotechnology and Education Applied to One Health (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ, RONDÔNIA, Federal University of Rondônia, UNIR, Porto Velho 76812-245, RO, Brazil;
- Sao Lucas University Center, SÃO LUCAS PVH, Porto Velho 76804-414, RO, Brazil
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
| | - Marcos Roberto de Mattos Fontes
- Western Amazon Research and Knowledge Network of Excellence (RED-CONEXAO), Basic and Applied Toxinology Research Network (RED-TOX), the National Institute of Science and Technology of Epidemiology of the Western Amazon (INCT EpiAmO), Porto Velho 76812-245, Ro, Brazil;
- Institute for Advanced Studies of the Sea (IEAMar), Universidade Estadual Paulista (UNESP), São Vicente 11350-011, SP, Brazil
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-970, SP, Brazil
| | - Marta Chagas Monteiro
- Postgraduate Program in Neuroscience and Cell Biology, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.G.F.); (M.C.M.)
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.E.C.E.); (T.N.G.); (D.F.R.-E.)
| |
Collapse
|
12
|
Sørensen CV, Almeida JR, Bohn MF, Rivera-de-Torre E, Schoffelen S, Voldborg BG, Ljungars A, Vaiyapuri S, Laustsen AH. Discovery of a human monoclonal antibody that cross-neutralizes venom phospholipase A 2s from three different snake genera. Toxicon 2023; 234:107307. [PMID: 37783315 DOI: 10.1016/j.toxicon.2023.107307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Despite the considerable global impact of snakebite envenoming, available treatments remain suboptimal. Here, we report the discovery of a broadly-neutralizing human monoclonal antibody, using a phage display-based cross-panning strategy, capable of reducing the cytotoxic effects of venom phospholipase A2s from three different snake genera from different continents. This highlights the potential of utilizing monoclonal antibodies to develop more effective, safer, and globally accessible polyvalent antivenoms that can be widely used to treat snakebite envenoming.
Collapse
Affiliation(s)
- Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - José R Almeida
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom
| | - Markus-Frederik Bohn
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sanne Schoffelen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Bjørn G Voldborg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading, RG6 6UB, United Kingdom.
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
Jones L, Waite C, Neri-Castro E, Fry BG. Comparative Analysis of Alpha-1 Orthosteric-Site Binding by a Clade of Central American Pit Vipers (Genera Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium). Toxins (Basel) 2023; 15:487. [PMID: 37624244 PMCID: PMC10467085 DOI: 10.3390/toxins15080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The distribution and relative potency of post-synaptic neurotoxic activity within Crotalinae venoms has been the subject of less investigation in comparison with Elapidae snake venoms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides, Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant prey types, we aimed to uncover any activity present within this clade of snakes that may have been overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird, rodent and human α-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer. Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with significant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphibian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge gap in neurotoxic activity within these species, since symptoms would not appear in bite reports. This study reports novel venom activity, which was previously unreported, indicating toxins that bind to post-synaptic receptors may be more widespread in pit vipers than previously considered. While these effects appear to not be clinically significant due to lineage-specific effects, they are of significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1 orthosteric site binding observed within this study confers neurotoxic venom activity.
Collapse
Affiliation(s)
- Lee Jones
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Callum Waite
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio 35010, Dgo., Mexico;
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, Cuernavaca 62210, Mor., Mexico
| | - Bryan G. Fry
- Venom Evolution Laboratory, School of the Environment, University of Queensland, St Lucia, Queensland 4072, Australia;
| |
Collapse
|
14
|
Rosales-García RA, Rautsaw RM, Hofmann EP, Grünwald CI, Franz-Chavez H, Ahumada-Carrillo IT, Ramirez-Chaparro R, de la Torre-Loranca MA, Strickland JL, Mason AJ, Holding ML, Borja M, Castañeda-Gaytan G, Myers EA, Sasa M, Rokyta DR, Parkinson CL. Sequence Divergence in Venom Genes Within and Between Montane Pitviper (Viperidae: Crotalinae: Cerrophidion) Species is Driven by Mutation-Drift Equilibrium. J Mol Evol 2023; 91:514-535. [PMID: 37269364 PMCID: PMC10995822 DOI: 10.1007/s00239-023-10115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/03/2023] [Indexed: 06/05/2023]
Abstract
Snake venom can vary both among and within species. While some groups of New World pitvipers-such as rattlesnakes-have been well studied, very little is known about the venom of montane pitvipers (Cerrophidion) found across the Mesoamerican highlands. Compared to most well-studied rattlesnakes, which are widely distributed, the isolated montane populations of Cerrophidion may facilitate unique evolutionary trajectories and venom differentiation. Here, we describe the venom gland transcriptomes for populations of C. petlalcalensis, C. tzotzilorum, and C. godmani from Mexico, and a single individual of C. sasai from Costa Rica. We explore gene expression variation in Cerrophidion and sequence evolution of toxins within C. godmani specifically. Cerrophidion venom gland transcriptomes are composed primarily of snake venom metalloproteinases, phospholipase A[Formula: see text]s (PLA[Formula: see text]s), and snake venom serine proteases. Cerrophidion petlalcalensis shows little intraspecific variation; however, C. godmani and C. tzotzilorum differ significantly between geographically isolated populations. Interestingly, intraspecific variation was mostly attributed to expression variation as we did not detect signals of selection within C. godmani toxins. Additionally, we found PLA[Formula: see text]-like myotoxins in all species except C. petlalcalensis, and crotoxin-like PLA[Formula: see text]s in the southern population of C. godmani. Our results demonstrate significant intraspecific venom variation within C. godmani and C. tzotzilorum. The toxins of C. godmani show little evidence of directional selection where variation in toxin sequence is consistent with evolution under a model of mutation-drift equilibrium. Cerrophidion godmani individuals from the southern population may exhibit neurotoxic venom activity given the presence of crotoxin-like PLA[Formula: see text]s; however, further research is required to confirm this hypothesis.
Collapse
Affiliation(s)
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Erich P Hofmann
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
- Science Department, Cape Fear Community College, Wilmington, NC, 28401, USA
| | | | - Hector Franz-Chavez
- Herp.mx A.C., Colima, Mexico
- Biodiversa A. C., Chapala, Jalisco, 45900, Mexico
| | | | | | | | - Jason L Strickland
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Andrew J Mason
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew L Holding
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Gómez Palacio, Durango, 35010, Mexico
| | - Gamaliel Castañeda-Gaytan
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Gómez Palacio, Durango, 35010, Mexico
| | - Edward A Myers
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA
| | - Mahmood Sasa
- Centro Investigaciones en Biodiversidad y Ecología Tropical and Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Christopher L Parkinson
- Department of Biological Sciences, Clemson University, 190 Collings St., Clemson, SC, 29634, USA.
| |
Collapse
|
15
|
Chowdhury A, Lewin MR, Carter RW, Casewell NR, Fry BG. Keel venom: Rhabdophis subminiatus (red-necked keelback) venom pathophysiologically affects diverse blood clotting pathways. Toxicon 2022; 218:19-24. [PMID: 36057394 DOI: 10.1016/j.toxicon.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Venoms are evolutionary novelties that have real-world implications due to their impact upon human health. However, relative to the abundant studies of elapid and viperid snake venoms, fewer investigations have been undertaken on those of rear-fanged snakes as they are more problematic for obtaining venom. While most rear-fanged venomous snakes are not considered to be of great medical importance, several species are capable of producing fatalities. Most notable among these are snakes from the genus Rhabdophis, the Asian "keelback" snakes. Prior work have described potent procoagulant toxicity suggesting Factor X and prothrombin activation, but did not investigate the ability to activate other clotting factors. Here we show that in addition to activating both Factor X and prothrombin (with prothrombin twice that of FX), the venom of Rhabdophis subminiatus is able to more potently activate Factor VII (ten times that of prothrombin), while also activating FXII and FIX equipotently to prothrombin, and with FXI also activated but at a much lower level. The ability to activate FVII represents a third convergent evolution of this trait. The Australian elapid clade of [Oxyuranus (taipans) + Pseudonaja (brown snakes)] was the first identified to have evolved this trait. and only recently was it shown to be independently present in another lineage (the Central American viperid species Porthidium volcanicum). In addition, the abilities to activate FXI and FXII are also convergent between R. subminiatus and P. volcanicum, but with R. subminiatus being much more potent. By testing across amphibian, avian, and mammalian plasmas we demonstrate that the venom is potently procoagulant across diverse plasma types. However, consistent with dietary preference, R. subminiatus venom was most potent upon amphibian plasma. While a Rhabdophis antivenom is produced in Japan to treat R. tigrinus envenomings, it is scarce even within Japan and is not exported. As this genus is very wide-ranging in Asia, alternate treatment options are in need of development. Hence we tested the ability of candidate, broad-spectrum enzyme inhibitors to neutralize R. subminiatus venom: marimastat was more effective than prinomastat but both marimastat and prinomastat were significantly more effective than DMPS (2,3-Dimercapto-1-propanesulfonic acid). The findings of this study shed light on the evolution of these fascinating rear-fanged snakes as well as explored their systemic effects upon blood coagulation and point to potential treatment options for the rare, but potentially lethal encounters.
Collapse
Affiliation(s)
- Abhinandan Chowdhury
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia; Department of Biochemistry & Microbiology, North South University, Dhaka, Bangladesh.
| | - Matthew R Lewin
- Ophirex Inc., Corte Madera, CA, 94925, USA; California Academy of Sciences, San Francisco, CA, 94118, USA
| | | | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Science, University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|