1
|
Hussain SS, Kingsley JD. Metabolomics and proteomics: synergistic tools for understanding snake venom inhibition. Arch Toxicol 2025; 99:915-934. [PMID: 39760869 DOI: 10.1007/s00204-024-03947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Snake envenomation presents a significant global health challenge, especially in rural areas of tropical and subtropical regions. Traditional antivenom therapies face limitations related to efficacy, availability, and specificity, prompting a need for novel approaches. Recent advancements in omics technologies, particularly metabolomics and proteomics, have enhanced our understanding of snake venom composition, toxicity, and potential therapeutic strategies. Metabolomics allows for the study of metabolic changes induced by venom, providing insights into disrupted pathways and possible inhibitors. Proteomics facilitates the identification and characterization of venom proteins, unveiling their interactions with therapeutic agents. Integrative databases such as the Snake Venom Database (SVDB) and STAB Profiles enhance this research by cataloging venom components and aiding in the analysis of venom-antivenom interactions. The combined application of metabolomics and proteomics has led to the identification of crucial metabolic pathways and protein targets essential for effective venom inhibition. This review explores current advances in these fields, emphasizing the role of omics in identifying novel inhibitors and developing next-generation antivenoms. The integrated approach of metabolomics and proteomics offers a comprehensive understanding of snake venom biology, paving the way for more effective and tailored therapeutic solutions for envenomation.
Collapse
Affiliation(s)
- Sana S Hussain
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - J Danie Kingsley
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Yong MY, Tan KY, Tan CH. A genus-wide study on venom proteome variation and phospholipase A 2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus). Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110077. [PMID: 39579840 DOI: 10.1016/j.cbpc.2024.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
High molecular weight proteins are present abundantly in viperid venoms. The amino acid sequence can be highly variable, contributing to the structure and function diversity of snake venom protein. However, this variability remains poorly understood in many species. The study investigated the venom protein variability in a distinct clade of Asian pit vipers (Trimeresurus species complex) through comparative proteomics, applying gel electrophoresis (SDS-PAGE), liquid chromatography-tandem mass spectrometry (LCMS/MS), and bioinformatic approaches. The proteomes revealed a number of conserved protein families, within each are variably expressed protein paralogs that are unrelated to the snake phylogeny and geographic origin. The expression levels of two major enzymes, i.e., snake venom serine proteinase and metalloproteinase, correlate weakly with procoagulant and hemorrhagic activities, implying co-expression of other functionally versatile toxins in the venom. The phospholipase A2 (PLA2) abundance correlates strongly with its enzymatic activity, and a unique phenotype was discovered in two species expressing extremely little PLA2. The commercial mono-specific antivenom effectively neutralized the venoms' procoagulant and hemorrhagic effects but failed to inhibit the PLA2 activities. Instead, the PLA2 activities of all venoms were effectively inhibited by the small molecule inhibitor varespladib, suggesting its potential to be repurposed as a highly potent adjuvant therapeutic in snakebite envenoming.
Collapse
Affiliation(s)
- Mun Yee Yong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan; Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Lüddecke T, Avella I, Damm M, Schulte L, Eichberg J, Hardes K, Schiffmann S, Henke M, Timm T, Lochnit G, Vilcinskas A. The Toxin Diversity, Cytotoxicity, and Enzymatic Activity of Cape Cobra ( Naja nivea) Venom. Toxins (Basel) 2024; 16:438. [PMID: 39453214 PMCID: PMC11511112 DOI: 10.3390/toxins16100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
"True" cobras (genus Naja) are among the venomous snakes most frequently involved in snakebite accidents in Africa and Asia. The Cape cobra (Naja nivea) is one of the African cobras of highest medical importance, but much remains to be learned about its venom. Here, we used a shotgun proteomics approach to better understand the qualitative composition of N. nivea venom and tested its cytotoxicity and protease activity as well as its effect on intracellular Ca2+ release and NO synthesis. We identified 156 venom components representing 17 protein families, with the dominant ones being three-finger toxins, mostly of the short-chain type. Two-thirds of the three-finger toxin entries identified were assigned as cytotoxins, while the remainder were categorized as neurotoxins, including short-chain, long-chain, and ancestral three-finger toxins. We also identified snake venom metalloproteinases and members of CRISP, l-amino acid oxidase, and other families. Protease activity and its effect on intracellular Ca2+ release and NO synthesis were low. Phospholipase A2 activity was surprisingly high, despite this toxin family being marginally recovered in the analyzed venom. Cytotoxicity was relevant only at higher venom concentrations, with macrophage and neuroblastoma cell lines showing the lowest viability. These results are in line with the predominantly neurotoxic envenomation symptoms caused by Cape cobra bites. The present overview of the qualitatively complex and functionally intriguing venom of N. nivea may provide insights into the pathobiochemistry of this species' venom.
Collapse
Affiliation(s)
- Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Lennart Schulte
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (I.A.); (M.D.); (L.S.)
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Susanne Schiffmann
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Marina Henke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Thomas Timm
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute for Biochemistry, Justus Liebig University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; (J.E.); (K.H.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; (S.S.); (M.H.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| |
Collapse
|
4
|
Alfa-Ibrahim Adio A, Malami I, Lawal N, Jega AY, Abubakar B, Bello MB, Ibrahim KG, Abubakar MB, Abdussamad A, Imam MU. Neurotoxic snakebites in Africa: Clinical implications, therapeutic strategies, and antivenom efficacy. Toxicon 2024; 247:107811. [PMID: 38917892 DOI: 10.1016/j.toxicon.2024.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Snakebite is a significant health concern in Africa, particularly due to neurotoxic envenomation which can lead to neuromuscular paralysis and respiratory failure. In Nigeria, snakes from the Elapidae family are a notable cause of envenomation cases, though these incidents are underreported. This review examined case reports of neurotoxic envenomation in Africa, highlighting the clinical impacts and the efficacy of available antivenoms. Preclinical studies showed that the polyvalent antivenom from the South African Institute for Medical Research (SAIMR) was highly effective against neurotoxicity with a protective efficacy (R) of 1346.80 mg/mL, while clinical assessment emphasized the need for high-dose antivenom therapy along with supportive measures like mechanical ventilation. Unlike hemorrhagic envenomation, where antivenom promptly resolves bleeding, neurotoxic cases often require additional interventions. The review underscores the necessity for tailored approaches in antivenom therapy to address the complexities of neurotoxic snakebites and reduce their public health burden in Africa.
Collapse
Affiliation(s)
- Abdulbaki Alfa-Ibrahim Adio
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Biochemistry and Molecular Biology, Faculty of Chemical and Life Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nafiu Lawal
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Amina Yusuf Jega
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Bilyaminu Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Muhammad Bashir Bello
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria; Vaccine Development Unit, Infectious Disease Research Development, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O. Box 2000, Zarqa, 13110, Jordan; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Murtala Bello Abubakar
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abdussamad Abdussamad
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| |
Collapse
|
5
|
Offor BC, Piater LA. A comparison of the venom proteomes and potential therapeutics of 3 African naja subgenera. Toxicon 2024; 245:107792. [PMID: 38838860 DOI: 10.1016/j.toxicon.2024.107792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
African cobras (Naja species) represent one of the most encountered medically important snakes in Africa. They are classified as African spitting (Afronaja subgenus) and non-spitting cobras (Uraeus and Boulengerina subgenera) with similar and different characteristics. Snake venom toxins including three-finger toxin (3FTx), phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP) cause snakebite envenomation leading to morbidity and mortality. The profile of the proteome of African cobra venoms will help to develop safer and more effective antivenoms. The approval of Captopril by the US Food and Drug Administration (FDA) for the treatment of cardiovascular diseases, has led to intensified research towards possible use of venom toxins as therapeutics. In this review, we compare the venom proteome profile of 3 African Naja subgenera. In both Afronaja and Boulengerina subgenera, 3FTx (Afronaja-69.79%; Boulengerina-60.56%) followed by PLA2 (Afronaja-21.15%; Boulengerina-20.21%) dominated the venoms compared to the Uraeus subgenus dominated by 3FTx (84.55%) with little to no PLA2 abundance (0.8%). The venom of subgenus Uraeus was distinct from the other two subgenera by the almost total absence of PLA2, thus indicating little or no contribution of PLA2 in the envenomation caused by Uraeus compared to Afronaja and Boulengerina. Furthermore, we report studies on the experimental testing of African cobra venoms and toxins against diseases including anti-cancer properties.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa.
| |
Collapse
|
6
|
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins (Basel) 2024; 16:262. [PMID: 38922156 PMCID: PMC11209149 DOI: 10.3390/toxins16060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia;
| | | |
Collapse
|
7
|
McFarlane LO, Pukala TL. Proteomic Investigation of Cape Cobra ( Naja nivea) Venom Reveals First Evidence of Quaternary Protein Structures. Toxins (Basel) 2024; 16:63. [PMID: 38393141 PMCID: PMC10892407 DOI: 10.3390/toxins16020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.
Collapse
Affiliation(s)
| | - Tara L. Pukala
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
8
|
Gómez A, Sánchez A, Durán G, Villalta M, Segura Á, Vargas M, Solano D, Herrera M, Sánchez M, Gutiérrez JM, León G. Intrageneric cross-reactivity of monospecific rabbit antisera against venoms of the medically most important Naja spp. African snakes. PLoS Negl Trop Dis 2023; 17:e0011545. [PMID: 37582064 PMCID: PMC10426987 DOI: 10.1371/journal.pntd.0011545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Envenomations by African snakes represent a high burden in the sub-Sahara region. The design and fabrication of polyspecific antivenoms with a broader effectiveness, specially tailored for its use in sub-Saharan Africa, require a better understanding of the immunological features of different Naja spp. venoms of highest medical impact in Africa; and to select the most appropriate antigen combinations to generate antivenoms of wider neutralizing scope. METHODOLOGY/PRINCIPAL FINDINGS Rabbit-derived monospecific antisera were raised against the venoms of five spitting cobras and six non-spitting cobras. The effects of immunization in the animal model were assessed, as well as the development of antibody titers, as proved by immunochemical assays and neutralization of lethal, phospholipase A2 and dermonecrotic activities. By the end of the immunization schedule, the immunized rabbits showed normal values of all hematological parameters, and no muscle tissue damage was evidenced, although alterations in aspartate aminotransferase (AST) and alkaline phosphatase (ALP) suggested a degree of hepatic damage caused mainly by spitting cobra venoms. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within the spitting and no-spitting cobras, yet some antisera showed more extensive cross-reactivity than others. The antisera with the widest coverage were those of anti-Naja ashei and anti-N. nigricollis for the spitting cobras, and anti-N. haje and anti-N. senegalensis for the non-spitting cobras. CONCLUSIONS/SIGNIFICANCE The methods and study design followed provide a rationale for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against cobra venoms in sub-Saharan Africa. Results suggest that venoms from N. ashei, N. nigricollis within the spitting cobras, and N. haje and N. senegalensis within the non-spitting cobras, generate antisera with a broader cross-reactivity. These experimental results should be translated to larger animal models used in antivenom elaboration to assess whether these predictions are reproduced.
Collapse
Affiliation(s)
- Aarón Gómez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Andrés Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gina Durán
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Melvin Sánchez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
9
|
Averin AS, Berezhnov AV, Pimenov OY, Galimova MH, Starkov VG, Tsetlin VI, Utkin YN. Effects of Cobra Cardiotoxins on Intracellular Calcium and the Contracture of Rat Cardiomyocytes Depend on Their Structural Types. Int J Mol Sci 2023; 24:9259. [PMID: 37298207 PMCID: PMC10253216 DOI: 10.3390/ijms24119259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cardiotoxins (CaTx) of the three-finger toxin family are one of the main components of cobra venoms. Depending on the structure of the N-terminal or the central polypeptide loop, they are classified into either group I and II or P- and S-types, respectively, and toxins of different groups or types interact with lipid membranes variably. While their main target in the organism is the cardiovascular system, there is no data on the effects of CaTxs from different groups or types on cardiomyocytes. To evaluate these effects, a fluorescence measurement of intracellular Ca2+ concentration and an assessment of the rat cardiomyocytes' shape were used. The obtained results showed that CaTxs of group I containing two adjacent proline residues in the N-terminal loop were less toxic to cardiomyocytes than group II toxins and that CaTxs of S-type were less active than P-type ones. The highest activity was observed for Naja oxiana cobra cardiotoxin 2, which is of P-type and belongs to group II. For the first time, the effects of CaTxs of different groups and types on the cardiomyocytes were studied, and the data obtained showed that the CaTx toxicity to cardiomyocytes depends on the structures both of the N-terminal and central polypeptide loops.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center of Biological Research”, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia; (A.S.A.); (A.V.B.)
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center of Biological Research”, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia; (A.S.A.); (A.V.B.)
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (O.Y.P.); (M.H.G.)
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia; (O.Y.P.); (M.H.G.)
| | - Vladislav G. Starkov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.G.S.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.G.S.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (V.G.S.); (V.I.T.)
| |
Collapse
|
10
|
Tan CH, Tan KY, Ng TS, Tan NH, Chong HP. De Novo Venom Gland Transcriptome Assembly and Characterization for Calloselasma rhodostoma (Kuhl, 1824), the Malayan Pit Viper from Malaysia: Unravelling Toxin Gene Diversity in a Medically Important Basal Crotaline. Toxins (Basel) 2023; 15:toxins15050315. [PMID: 37235350 DOI: 10.3390/toxins15050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Southeast Asia, the Malayan Pit Viper (Calloselasma rhodostoma) is a venomous snake species of medical importance and bioprospecting potential. To unveil the diversity of its toxin genes, this study de novo assembled and analyzed the venom gland transcriptome of C. rhodostoma from Malaysia. The expression of toxin genes dominates the gland transcriptome by 53.78% of total transcript abundance (based on overall FPKM, Fragments Per Kilobase Million), in which 92 non-redundant transcripts belonging to 16 toxin families were identified. Snake venom metalloproteinase (SVMP, PI > PII > PIII) is the most dominant family (37.84% of all toxin FPKM), followed by phospholipase A2 (29.02%), bradykinin/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (16.30%), C-type lectin (CTL, 10.01%), snake venom serine protease (SVSP, 2.81%), L-amino acid oxidase (2.25%), and others (1.78%). The expressions of SVMP, CTL, and SVSP correlate with hemorrhagic, anti-platelet, and coagulopathic effects in envenoming. The SVMP metalloproteinase domains encode hemorrhagins (kistomin and rhodostoxin), while disintegrin (rhodostomin from P-II) acts by inhibiting platelet aggregation. CTL gene homologues uncovered include rhodocytin (platelet aggregators) and rhodocetin (platelet inhibitors), which contribute to thrombocytopenia and platelet dysfunction. The major SVSP is a thrombin-like enzyme (an ancrod homolog) responsible for defibrination in consumptive coagulopathy. The findings provide insight into the venom complexity of C. rhodostoma and the pathophysiology of envenoming.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tzu Shan Ng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|