1
|
Meng S, Liang C, Zheng Q, Zhu S, Wu J, Wang B, Wang Y, Zhang Z, Cheng D. Insecticidal effect and mechanism of Metarhizium anisopliae ZHKUJGZ1 against Solenopsis invicta (Hymenoptera: Formicidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106350. [PMID: 40082041 DOI: 10.1016/j.pestbp.2025.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
The red imported fire ant (RIFA), Solenopsis invicta Buren, poses threats to biodiversity, public safety, agriculture, and the economy, especially as global trade expands its reach into China. To address this, researchers screened fungal isolates from soil in Dongguan City, Guangdong Province, aiming to develop a biopesticide against RIFA. Metarhizium anisopliae, known for its biocontrol potential, was identified as a candidate. This insect pathogenic fungus parasitizes Lepidoptera pest larvae and Hemiptera stinkbugs, causing green rigidity and repeated infestations. Microscopic, morphological, and molecular analyses were conducted on the fungal isolates, with ZHKUJGZ1, a strain of M. anisopliae, showing promise. Tests revealed that inoculating RIFA workers with 1 × 107 cfu/mL of ZHKUJGZ1 resulted in an 83.33 ± 1.57 % mortality rate, with an LC50 of 8.36 × 106 cfu/mL. Untargeted metabolomics suggested that ZHKUJGZ1 enhances insecticidal activity by disrupting the nervous system, signaling, digestive system, amino acid metabolism, and biosynthesis in RIFA. This study highlights the potential of using entomopathogenic fungi like M. anisopliae isolated from Dongguan as an effective strategy for controlling RIFA, offering a promising biocontrol option for agricultural pests.
Collapse
Affiliation(s)
- ShaoKe Meng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - ChaoPeng Liang
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Qun Zheng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - ShiQi Zhu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - BoTong Wang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - YongQing Wang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| | - DongMei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China.
| |
Collapse
|
2
|
Wei S, Xiao J, Ju F, Liu J, Hu Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front Pharmacol 2024; 15:1353234. [PMID: 38746009 PMCID: PMC11092382 DOI: 10.3389/fphar.2024.1353234] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Sophocarpine is a natural compound that belongs to the quinolizidine alkaloid family, and has a long history of use and widespread distribution in traditional Chinese herbal medicines such as Sophora alopecuroides L., Sophora flavescens Ait., and Sophora subprostrata. This article aims to summarize the pharmacology, pharmacokinetics, and toxicity of sophocarpine, evaluate its potential pharmacological effects in various diseases, and propose the necessity for further research and evaluation to promote its clinical application. A large number of studies have shown that it has anti-inflammatory, analgesic, antiviral, antiparasitic, anticancer, endocrine regulatory, and organ-protective effects as it modulates various signaling pathways, such as the NF-κB, MAPK, PI3K/AKT, and AMPK pathways. The distribution of sophocarpine in the body conforms to a two-compartment model, and sophocarpine can be detected in various tissues with a relatively short half-life. Although the pharmacological effects of sophocarpine have been confirmed, toxicity and safety assessments and reports on molecular mechanisms of its pharmacological actions have been limited. Given its significant pharmacological effects and potential clinical value, further research and evaluation are needed to promote the clinical application of sophocarpine.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|
4
|
Liu F, Xu F, Zhang Y, Qian Y, Zhang G, Shi L, Peng L. Comparative Analyses of Reproductive Caste Types Reveal Vitellogenin Genes Involved in Queen Fertility in Solenopsis invicta. Int J Mol Sci 2023; 24:17130. [PMID: 38138959 PMCID: PMC10743176 DOI: 10.3390/ijms242417130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The red imported fire ant (Solenopsis invicta Buren) is a social pest species with a robust reproductive ability that causes extensive damage. Identification of the genes involved in queen fertility is critical in order to better understand the reproductive biology and screening for the potential molecular targets in S. invicta. Here, we used the mRNA deep sequencing (RNA-seq) approach to identify differentially expressed genes (DEGs) in the transcriptomes of three reproductive caste types of S. invicta, including queen (QA) and winged female (FA) and male (MA) ants. The genes that were specific to and highly expressed in the queens were then screened, and the Vg2 and Vg3 genes were chosen as targets to explore their functions in oogenesis and fertility. A minimum of 6.08 giga bases (Gb) of clean reads was obtained from all samples, with a mapping rate > 89.78%. There were 7524, 7133, and 977 DEGs identified in the MA vs. QA, MA vs. FA, and FA vs. QA comparisons, respectively. qRT-PCR was used to validate 10 randomly selected DEGs, including vitellogenin 2 (Vg2) and 3 (Vg3), and their expression patterns were mostly consistent with the RNA-seq data. The S. invicta Vgs included conserved domains and motifs that are commonly found in most insect Vgs. SiVg2 and SiVg3 were highly expressed in queens and winged females and were most highly expressed in the thorax, followed by the fat body, head, and epidermis. Evaluation based on a loss-of-function-based knockdown analysis showed that the downregulation of either or both of these genes resulted in smaller ovaries, less oogenesis, and less egg production. The results of transcriptional sequencing provide a foundation for clarifying the regulators of queen fertility in S. invicta. The functions of SiVg2 and SiVg3 as regulators of oogenesis highlight their importance in queen fecundity and their potential as targets of reproductive disruption in S. invicta control.
Collapse
Affiliation(s)
- Fenghao Liu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengchao Xu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yikun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yurui Qian
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guofeng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longqing Shi
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China;
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.L.); (F.X.); (Y.Z.); (Y.Q.); (G.Z.)
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Aguilera N, Guedes LM, Alvarado U, Sáez-Carrillo K. Teline monspessulana Can Harm the Chilean Native Tree Nothofagus obliqua: Effects on Germination and Initial Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3419. [PMID: 37836159 PMCID: PMC10575075 DOI: 10.3390/plants12193419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Teline monspessulana is highly invasive in several countries around the world. This species pressurizes and displaces several native and endemic tree species in south-central Chile such as Nothofagus obliqua, the native species of greatest timber interest. We determined the effects induced by allelochemical stress of T. monspessulana on N. obliqua germination and initial growth. Germination was evaluated under in vitro conditions and in natural substrate obtained from sites inhabited by N. obliqua and from nearby areas invaded by T. monspessulana. Controls irrigated with tap water and treatments with aqueous extracts of aerial organs of the invasive species were used. Morphometric and morphological variables were evaluated, and the composition of alkaloids and phenols from the plant organs used for the aqueous extracts was determined. The substrates were also chemically characterized. Allelochemicals synthesized by T. monspessulana caused germination and growth inhibition and tissue-level alterations, as well as leaf and root damage in N. obliqua seedlings. In the aerial organs of T. monspessulana, the quinolizidine alkaloids aphylline, caulophylline, anagyrine, and sophocarpine were mainly detected. In addition, 21 phenolic compounds were identified, including gallic acid, vanillic acid, chlorogenic acid, p-coumaric acid, and quercetin. The phytotoxic potential of T. monspessulana can compromise the natural multiplication of N. obliqua and its survival from its first phenological stages. This interdisciplinary study model facilitated the clarification of the plant-plant relationship mediated by allelochemicals. The model can be replicated to investigate other interspecific interactions between invasive and native species.
Collapse
Affiliation(s)
- Narciso Aguilera
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, CP, Chile; (L.M.G.); (U.A.)
| | - Lubia M. Guedes
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, CP, Chile; (L.M.G.); (U.A.)
| | - Ulises Alvarado
- Laboratorio de Semioquímica Aplicada, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, Concepción 4030000, CP, Chile; (L.M.G.); (U.A.)
| | - Katia Sáez-Carrillo
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, CP, Chile;
| |
Collapse
|