1
|
Xie Z, Peng S, Ou G, Zhou X, Zhang G, Jiang H, Zhang T, Chen N. U-shaped association between dietary niacin intake and chronic kidney disease among US elderly: a nationwide cross-sectional study. Front Endocrinol (Lausanne) 2024; 15:1438373. [PMID: 39497801 PMCID: PMC11532146 DOI: 10.3389/fendo.2024.1438373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background In addition to hypertension or diabetes, elderly people are also considered one of the high-risk groups for chronic kidney disease (CKD). Although niacin is recognized for its renal protective properties, the link between dietary niacin intake and CKD remains uncertain. This study investigated this relationship in the elderly. Methods We included participants aged 60 and older from the National Health and Nutrition Examination Survey (NHANES) for the years 2003-2018. Dietary niacin intake was assessed through two non-consecutive 24-hour dietary recalls. CKD was diagnosed in individuals with a urine albumin-to-creatinine ratio exceeding 30 mg/g or an estimated glomerular filtration rate below 60 mL/min per 1.73 m^2. The study cohort comprised 4,649 participants, 1,632 of whom had CKD. Propensity score matching (PSM) was utilized to adjust for baseline differences between the groups. Results Our analysis, using smooth curve fitting and generalized additive models both before and after PSM, found a U-shaped curve depicting the relationship between dietary niacin intake and CKD risk, confirmed by a log-likelihood ratio test (P < 0.05). Threshold effect analysis (after PSM) indicated a reduced risk of CKD in older adults with a niacin intake below 38.83 mg per day [odds ratio (OR) = 0.99, 95% confidence interval (CI) 0.97-1.00]. In contrast, higher intake levels significantly increased the risk (OR = 1.03, 95% CI 1.00-1.06). Subgroup analysis indicated that these associations were consistent across different stratification variables (P for interaction > 0.05). Conclusion Our findings suggested a U-shaped association between dietary niacin intake and CKD risk among older Americans. However, further prospective cohort studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Shansen Peng
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Gejun Ou
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Xiaoqi Zhou
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Guihao Zhang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Huiming Jiang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Tianhui Zhang
- Departments of Radiology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| | - Nanhui Chen
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital (Meizhou Academy of Medical Sciences), Meizhou, China
| |
Collapse
|
2
|
Weerd JCVD, Wegberg AMJV, Boer TS, Engelke UFH, Coene KLM, Wevers RA, Bakker SJL, Blaauw PD, Groen J, Spronsen FJV, Heiner-Fokkema MR. Impact of Phenylketonuria on the Serum Metabolome and Plasma Lipidome: A Study in Early-Treated Patients. Metabolites 2024; 14:479. [PMID: 39330486 PMCID: PMC11434371 DOI: 10.3390/metabo14090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Data suggest that metabolites, other than blood phenylalanine (Phe), better and independently predict clinical outcomes in patients with phenylketonuria (PKU). METHODS To find new biomarkers, we compared the results of untargeted lipidomics and metabolomics in treated adult PKU patients to those of matched controls. Samples (lipidomics in EDTA-plasma (22 PKU and 22 controls) and metabolomics in serum (35 PKU and 20 controls)) were analyzed using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Data were subjected to multivariate (PCA, OPLS-DA) and univariate (Mann-Whitney U test, p < 0.05) analyses. RESULTS Levels of 33 (of 20,443) lipid features and 56 (of 5885) metabolite features differed statistically between PKU patients and controls. For lipidomics, findings include higher glycerolipids, glycerophospholipids, and sphingolipids species. Significantly lower values were found for sterols and glycerophospholipids species. Seven features had unknown identities. Total triglyceride content was higher. Higher Phe and Phe catabolites, tryptophan derivatives, pantothenic acid, and dipeptides were observed for metabolomics. Ornithine levels were lower. Twenty-six metabolite features were not annotated. CONCLUSIONS This study provides insight into the metabolic phenotype of PKU patients. Additional studies are required to establish whether the observed changes result from PKU itself, diet, and/or an unknown reason.
Collapse
Affiliation(s)
- Jorine C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annemiek M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Theo S Boer
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Udo F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Joost Groen
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
3
|
Hayat F, Deason JT, Bryan RL, Terkeltaub R, Song W, Kraus WL, Pluth J, Gassman NR, Migaud ME. Synthesis, Detection, and Metabolism of Pyridone Ribosides, Products of NAD Overoxidation. Chem Res Toxicol 2024; 37:248-258. [PMID: 38198686 PMCID: PMC10880730 DOI: 10.1021/acs.chemrestox.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Pyridone-containing adenine dinucleotides, ox-NAD, are formed by overoxidation of nicotinamide adenine dinucleotide (NAD+) and exist in three distinct isomeric forms. Like the canonical nucleosides, the corresponding pyridone-containing nucleosides (PYR) are chemically stable, biochemically versatile, and easily converted to nucleotides, di- and triphosphates, and dinucleotides. The 4-PYR isomer is often reported with its abundance increasing with the progression of metabolic diseases, age, cancer, and oxidative stress. Yet, the pyridone-derived nucleotides are largely under-represented in the literature. Here, we report the efficient synthesis of the series of ox-NAD and pyridone nucleotides and measure the abundance of ox-NAD in biological specimens using liquid chromatography coupled with mass spectrometry (LC-MS). Overall, we demonstrate that all three forms of PYR and ox-NAD are found in biospecimens at concentrations ranging from nanomolar to midmicromolar and that their presence affects the measurements of NAD(H) concentrations when standard biochemical redox-based assays are applied. Furthermore, we used liver extracts and 1H NMR spectrometry to demonstrate that each ox-NAD isomer can be metabolized to its respective PYR isomer. Together, these results suggest a need for a better understanding of ox-NAD in the context of human physiology since these species are endogenous mimics of NAD+, the key redox cofactor in metabolism and bioenergetics maintenance.
Collapse
Affiliation(s)
- Faisal Hayat
- Mitchell
Cancer Institute, Frederick P. Whiddon College of Medicine, Department
of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - J. Trey Deason
- Mitchell
Cancer Institute, Frederick P. Whiddon College of Medicine, Department
of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| | - Ru Liu Bryan
- School
of Medicine, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- VA
San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, California 92161, United States
| | - Robert Terkeltaub
- School
of Medicine, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- VA
San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, California 92161, United States
| | - Weidan Song
- Cecil
H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - W. Lee Kraus
- Cecil
H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Janice Pluth
- Department
of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las
Vegas, Nevada 89154, United States
| | - Natalie R. Gassman
- Department
of Pharmacology and Toxicology, Heersink School of Medicine, University of Alabama, Birmingham, 1720 second Ave S, Birmingham, Alabama 35294, United States
| | - Marie E. Migaud
- Mitchell
Cancer Institute, Frederick P. Whiddon College of Medicine, Department
of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, Alabama 36604, United States
| |
Collapse
|
4
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
5
|
Azouaoui D, Choinière MR, Khan M, Sayfi S, Jaffer S, Yousef S, Patten DA, Green AE, Menzies KJ. Meta-analysis of NAD(P)(H) quantification results exhibits variability across mammalian tissues. Sci Rep 2023; 13:2464. [PMID: 36774401 PMCID: PMC9922293 DOI: 10.1038/s41598-023-29607-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD+) plays an important role in energy metabolism and signaling pathways controlling crucial cellular functions. The increased interest in NAD+ metabolism and NAD+-boosting therapies has reinforced the necessity for accurate NAD+ quantification. To examine the published NAD(P)(H) measures across mammalian tissues, we performed a meta-analysis of the existing data. An Ovid MEDLINE database search identified articles with NAD(P)(H) quantification results obtained from mammalian tissues published between 1961 and 2021. We screened 4890 records and extracted quantitative data, as well as the quantification methods, pre-analytical conditions, and subject characteristics. The extracted physiological NAD(P)(H) concentrations in various tissues from mice, rats, and humans, revealed an important inter- and intra-method variability that extended to recent publications. This highlights the relatively poor potential for cross-experimental analyses for NAD(P)(H) quantitative data and the importance of standardization for NAD(P)(H) quantification methods and pre-analytical procedures for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Dassine Azouaoui
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Michael René Choinière
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Momtafin Khan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Shahab Sayfi
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Simran Jaffer
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Selvia Yousef
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Alexander E Green
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Koszalka P, Kutryb-Zajac B, Mierzejewska P, Tomczyk M, Wietrzyk J, Serafin PK, Smolenski RT, Slominska EM. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR)—A Novel Oncometabolite Modulating Cancer-Endothelial Interactions in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms23105774. [PMID: 35628582 PMCID: PMC9145394 DOI: 10.3390/ijms23105774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.
Collapse
Affiliation(s)
- Patrycja Koszalka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Pawel K. Serafin
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| |
Collapse
|
7
|
Mierzejewska P, Kunc M, Zabielska-Kaczorowska MA, Kutryb-Zajac B, Pelikant-Malecka I, Braczko A, Jablonska P, Romaszko P, Koszalka P, Szade J, Smolenski RT, Slominska EM. An unusual nicotinamide derivative, 4-pyridone-3-carboxamide ribonucleoside (4PYR), is a novel endothelial toxin and oncometabolite. Exp Mol Med 2021; 53:1402-1412. [PMID: 34580423 PMCID: PMC8492732 DOI: 10.1038/s12276-021-00669-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Our recent studies identified a novel pathway of nicotinamide metabolism that involves 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) and demonstrated its endothelial cytotoxic effect. This study tested the effects of 4PYR and its metabolites in experimental models of breast cancer. Mice were divided into groups: 4T1 (injected with mammary 4T1 cancer cells), 4T1 + 4PYR (4PYR-treated 4T1 mice), and control, maintained for 2 or 21 days. Lung metastasis and endothelial function were analyzed together with blood nucleotides (including 4PYR), plasma amino acids, nicotinamide metabolites, and vascular ectoenzymes of nucleotide catabolism. 4PYR metabolism was also evaluated in cultured 4T1, MDA-MB-231, MCF-7, and T47D cells. An increase in blood 4PYR in 4T1 mice was observed at 2 days. 4PYR and its metabolites were noticed after 21 days in 4T1 only. Higher blood 4PYR was linked with more lung metastases in 4T1 + 4PYR vs. 4T1. Decreased L-arginine, higher asymmetric dimethyl-L-arginine, and higher vascular ecto-adenosine deaminase were observed in 4T1 + 4PYR vs. 4T1 and control. Vascular relaxation caused by flow-dependent endothelial activation in 4PYR-treated mice was significantly lower than in control. The permeability of 4PYR-treated endothelial cells was increased. Decreased nicotinamide but enhanced nicotinamide metabolites were noticed in 4T1 vs. control. Reduced N-methylnicotinamide and a further increase in Met2PY were observed in 4T1 + 4PYR vs. 4T1 and control. In cultured breast cancer cells, estrogen and progesterone receptor antagonists inhibited the production of 4PYR metabolites. 4PYR formation is accelerated in cancer and induces metabolic disturbances that may affect cancer progression and, especially, metastasis, probably through impaired endothelial homeostasis. 4PYR may be considered a new oncometabolite. Levels of a metabolite of nicotinamide, a form of vitamin B3, found in the blood and urine of cancer patients may provide a useful biomarker indicating the likelihood of metastasis. Disruption to the lining of blood vessels (endothelium) enables cancer cells to infiltrate the bloodstream and migrate to other organs. Research suggests that increased levels of 4PYR, a derivative of nicotinamide metabolism, may induce metabolic disturbances that favor cancer progression. Ewa Slominska and co-workers at the Medical University of Gdansk, Poland, examined 4PYR in mouse models injected with breast cancer cells and found increased levels in the blood only two days after injection. Mice with the highest 4PYR levels had enhanced lung metastases after three weeks. The team believes 4PYR activity may increase the permeability of the endothelium, but further investigation is needed.
Collapse
Affiliation(s)
| | - Michal Kunc
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Pawel Romaszko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Patrycja Koszalka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
8
|
Hayat F, Sonavane M, Makarov MV, Trammell SAJ, McPherson P, Gassman NR, Migaud ME. The Biochemical Pathways of Nicotinamide-Derived Pyridones. Int J Mol Sci 2021; 22:ijms22031145. [PMID: 33498933 PMCID: PMC7866226 DOI: 10.3390/ijms22031145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients.
Collapse
Affiliation(s)
- Faisal Hayat
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (F.H.); (M.S.)
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
| | - Manoj Sonavane
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (F.H.); (M.S.)
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
- Department of Physiology & Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail V. Makarov
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
| | - Samuel A. J. Trammell
- Novo Nordisk Foundation, Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Pamela McPherson
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
| | - Natalie R. Gassman
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
- Department of Physiology & Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Marie E. Migaud
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (F.H.); (M.S.)
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
- Correspondence:
| |
Collapse
|
9
|
Biochemical and Genetic Analysis of 4-Hydroxypyridine Catabolism in Arthrobacter sp. Strain IN13. Microorganisms 2020; 8:microorganisms8060888. [PMID: 32545463 PMCID: PMC7356986 DOI: 10.3390/microorganisms8060888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
N-Heterocyclic compounds are widely spread in the biosphere, being constituents of alkaloids, cofactors, allelochemicals, and artificial substances. However, the fate of such compounds including a catabolism of hydroxylated pyridines is not yet fully understood. Arthrobacter sp. IN13 is capable of using 4-hydroxypyridine as a sole source of carbon and energy. Three substrate-inducible proteins were detected by comparing protein expression profiles, and peptide mass fingerprinting was performed using MS/MS. After partial sequencing of the genome, we were able to locate genes encoding 4-hydroxypyridine-inducible proteins and identify the kpi gene cluster consisting of 16 open reading frames. The recombinant expression of genes from this locus in Escherichia coli and Rhodococcus erytropolis SQ1 allowed an elucidation of the biochemical functions of the proteins. We report that in Arthrobacter sp. IN13, the initial hydroxylation of 4-hydroxypyridine is catalyzed by a flavin-dependent monooxygenase (KpiA). A product of the monooxygenase reaction is identified as 3,4-dihydroxypyridine, and a subsequent oxidative opening of the ring is performed by a hypothetical amidohydrolase (KpiC). The 3-(N-formyl)-formiminopyruvate formed in this reaction is further converted by KpiB hydrolase to 3-formylpyruvate. Thus, the degradation of 4-hydroxypyridine in Arthrobacter sp. IN13 was analyzed at genetic and biochemical levels, elucidating this catabolic pathway.
Collapse
|
10
|
Löffler M, Carrey EA, Knecht W. The pathway to pyrimidines: The essential focus on dihydroorotate dehydrogenase, the mitochondrial enzyme coupled to the respiratory chain. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1281-1305. [PMID: 32043431 DOI: 10.1080/15257770.2020.1723625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper is based on the Anne Simmonds Memorial Lecture, given by Monika Löffler at the International Symposium on Purine and Pyrimidine Metabolism in Man, Lyon 2019. It is dedicated to H. Anne Simmonds (died 2010) - a founding member of the ESSPPMM, since 2003 Purine and Pyrimidine Society - and her outstanding contributions to the identification and study of inborn errors of purine and pyrimidine metabolism. The distinctive intracellular arrangement of pyrimidine de novo synthesis in higher eukaryotes is important to cells with a high demand for nucleic acid synthesis. The proximity of the enzyme active sites and the resulting channeling in CAD and UMP synthase is of kinetic benefit. The intervening enzyme dihydroorotate dehydrogenase (DHODH) is located in the mitochondrion with access to the ubiquinone pool, thus ensuring efficient removal of redox equivalents through the constitutive activity of the respiratory chain, also a mechanism through which the input of 2 ATP for carbamylphosphate synthesis is balanced by Oxphos. The obligatory contribution of O2 to de novo UMP synthesis means that DHODH has a pivotal role in adapting the proliferative capacity of cells to different conditions of oxygenation, such as hypoxia in growing tumors. DHODH also is a validated drug target in inflammatory diseases. This survey of selected topics of personal interest and reflection spans some 40 years of our studies from tumor cell cultures under hypoxia to in vitro assays including purification from mitochondria, localization, cloning, expression, biochemical characterization, crystallisation, kinetics and inhibition patterns of eukaryotic DHODH enzymes.
Collapse
Affiliation(s)
- Monika Löffler
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | | | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Gooding J, Cao L, Ahmed F, Mwiza JM, Fernander M, Whitaker C, Acuff Z, McRitchie S, Sumner S, Ongeri EM. LC-MS-based metabolomics analysis to identify meprin-β-associated changes in kidney tissue from mice with STZ-induced type 1 diabetes and diabetic kidney injury. Am J Physiol Renal Physiol 2019; 317:F1034-F1046. [PMID: 31411076 PMCID: PMC6843037 DOI: 10.1152/ajprenal.00166.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
Meprin metalloproteases have been implicated in the pathophysiology of diabetic kidney disease (DKD). Single-nucleotide polymorphisms in the meprin-β gene have been associated with DKD in Pima Indians, a Native American ethnic group with an extremely high prevalence of DKD. In African American men with diabetes, urinary meprin excretion positively correlated with the severity of kidney injury. In mice, meprin activity decreased at the onset of diabetic kidney injury. Several studies have identified meprin targets in the kidney. However, it is not known how proteolytic processing of the targets by meprins impacts the metabolite milieu in kidneys. In the present study, global metabolomics analysis identified differentiating metabolites in kidney tissues from wild-type and meprin-β knockout mice with streptozotocin (STZ)-induced type 1 diabetes. Kidney tissues were harvested at 8 wk post-STZ and analyzed by hydrophilic interaction liquid chromatography ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Principal component analysis identified >200 peaks associated with diabetes. Meprin expression-associated metabolites with strong variable importance of projection scores were indoxyl sulfate, N-γ-l-glutamyl-l-aspartic acid, N-methyl-4-pyridone-3-carboxamide, inosine, and cis-5-decenedioic acid. N-methyl-4-pyridone-3-carboxamide has been previously implicated in kidney injury, and its isomers, 4-PY and 2-PY, are markers of peroxisome proliferation and inflammation that correlate with creatinine clearance and glucose tolerance. Meprin deficiency-associated differentiating metabolites with high variable importance of projection scores were cortisol, hydroxymethoxyphenylcarboxylic acid-O-sulfate, and isovaleryalanine. The data suggest that meprin-β activity enhances diabetic kidney injury in part by altering the metabolite balance in kidneys, favoring high levels of uremic toxins such as indoxyl sulfate and N-methyl-pyridone-carboxamide.
Collapse
Affiliation(s)
- Jessica Gooding
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Lei Cao
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Faihaa Ahmed
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Jean-Marie Mwiza
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Mizpha Fernander
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| | - Courtney Whitaker
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Zach Acuff
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
| | - Susan McRitchie
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
- Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Susan Sumner
- National Institutes of Health Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Park, North Carolina
- Department of Nutrition, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Elimelda Moige Ongeri
- Department of Biology, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
12
|
Pelikant-Małecka I, Smoleński RT, Słomińska EM. Metabolism of 4-pyridone-3-carboxamide-1β-d-ribonucleoside (4PYR) in primary murine brain microvascular endothelial cells (mBMECs). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 37:639-644. [PMID: 30663501 DOI: 10.1080/15257770.2018.1535122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
4-pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) is a derivative of nicotinamide found physiologically in human body fluids that can be metabolized to mono-, di- or triphosphate derivatives (4PYMP, 4PYDP and 4PYTP respectively) and an analogue of NAD - the 1-β-D-ribonucleoside-4-pyridone-3-carboxamide adenine dinucleotide (4PYRAD) in human cells. The European Uremic Toxin Work Group (EUTox) has classified 4PYR as a uremic toxin that adversely affects endothelium. This study aimed to investigate the metabolism of 4PYR in murine brain microvascular endothelial cells (mBMECs). Incubation of mBMECs with 4PYR was carried out for 0, 24, 48 or 72 h. After incubation, a medium was removed and cellular concentrations of ATP, ADP, NAD, 4PYMP and 4PYRAD were analyzed using reversed-phase HPLC. 4PYR was metabolized by mBMECs to 4PYMP and 4PYRAD that reached concentrations of 2 ± 0.7 and 0.6 ± 0.2 nmol/mg protein (mean ± SEM), respectively, after 72 h incubation. However, unlike with endothelial cells studied so far this process has no effect on energy balance in the cell as indicated by maintained ATP/ADP ratio and adenine and nicotinamide intracellular pools. Further studies are required to explain whether the difference in 4PYR metabolism is related to differences between species or organs.
Collapse
Affiliation(s)
- Iwona Pelikant-Małecka
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland.,b Department of Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens , Medical University of Gdansk , Poland.,c Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL) , Gdansk , Poland
| | - Ryszard T Smoleński
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Ewa M Słomińska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
13
|
The chemistry of the vitamin B3 metabolome. Biochem Soc Trans 2018; 47:131-147. [PMID: 30559273 DOI: 10.1042/bst20180420] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
Abstract
The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleotide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate (NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and catabolic pathways in all forms of life. This pool also contributes to post-translational protein modifications and second messenger generation. Since NAD+ seats at the cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavailability through vitamin B3 supplementation has become a valuable nutritional and therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism. The present review highlights the chemical diversity of the vitamin B3-derived anabolites and catabolites of NAD+ and offers a chemical perspective on the approaches adopted to identify, modulate and measure the contribution of various precursors to the NAD(P)(H) pool.
Collapse
|
14
|
Pelikant-Malecka I, Kaniewska-Bednarczuk E, Szrok S, Sielicka A, Sledzinski M, Orlewska C, Smolenski RT, Slominska EM. Metabolic pathway of 4-pyridone-3-carboxamide-1β-d-ribonucleoside and its effects on cellular energetics. Int J Biochem Cell Biol 2017; 88:31-43. [PMID: 28323211 DOI: 10.1016/j.biocel.2017.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022]
Abstract
4-pirydone-3-carboxamide-1β-d-ribonucleoside (4PYR) is an endogenous nucleoside that could be converted to triphosphates, diphosphates, monophosphates and an analogue of NAD - 4PYRAD. Elevated level of these compounds have been reported in chronic renal failure, cancer and active HIV infection. However, little is known about the effect on cell functionality and the metabolic pathways. This study tested effects of 4PYR in different cell types on nucleotide, energy metabolism and clarified enzymes that are involved in conversions of 4PYR. We have found that human neuroblastoma cells, human malignant melanoma cells, human adipose-derived stem cells, human bone marrow-derived stem cells, human dermal microvascular endothelial cells and human embryonic kidney cells, were capable to convert 4PYR into its derivatives. This was associated with deterioration of cellular energetics. Incubation with 4PYR did not affect mitochondrial function, but decreased glycolytic rate (as measured by extracellular acidification) in endothelial cells. Silencing of adenosine kinase, cytosolic 5'-nucleotidase II and nicotinamide nucleotide adenylyltransferase 3, blocked metabolism of 4PYR. Incubation of endothelial cells with 4PYR decreased AMP deaminase activity by 40%. The main finding of this paper is that human cells (including cancer type) are capable of metabolizing 4PYR that lead to deterioration of energy metabolism, possibly as the consequence of inhibition of glycolysis. This study, it was also found that several enzymes of nucleotide metabolism could also contribute to the 4PYRconversions.
Collapse
Affiliation(s)
- Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | | | - Sylwia Szrok
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Alicja Sielicka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; Structural Heart Research Lab, Division of Cardiothoracic Surgery, Emory University, 380-B Northyards Blvd, Atlanta, 30308 GA, USA
| | - Maciej Sledzinski
- Department of General Surgery, Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-211 Gdansk, Poland
| | - Czesława Orlewska
- Department of Organic Chemistry, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| |
Collapse
|
15
|
Pelikant-Małecka I, Sielicka A, Kaniewska E, Smoleński RT, Słomińska EM. Influence of 4-pyridone-3-carboxamide-1Β-D-ribonucleoside (4PYR) on activities of extracellular enzymes in endothelial human cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:732-736. [PMID: 27906624 DOI: 10.1080/15257770.2016.1174263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Previous studies demonstrated that human endothelial cells were capable to phosphorylate 4-pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) to monophosphate (4PYMP) and formed another metabolite-an analog of NAD (4PYRAD). Elevated levels of 4PYMP and 4PYRAD had an adverse effect on energy balance-depressed adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) concentration in human endothelial cells. Ecto-enzymes such as ecto-nucleoside triphosphate diphosphohydrolase (eNTPD); ecto-5'-nucleotidase (e5'NT); and ecto-adenosine deaminase (eADA) are involved in controlling of inflammation and platelet aggregation. This study aimed to evaluate influence of 4PYR and its metabolites on activities of extracellular enzymes in human endothelial cells. Endothelial cells (endothelial cell line HMEC-1) were treated with 100 uM 4PYR for 0, 24, 48, or 72 hours. After incubation, intact HMEC-1 cells were incubated with suitable substrate. Simultaneously, in another path of experiments intracellular concentration of 4PYMP and 4PYRAD had been analyzed. Conversion of extracellular nucleotides into their products and intracellular concentration of 4PYMP and 4PYRAD were measured by high performance liquid chromatography (HPLC). We demonstrated that eNTPD and e5'NT activities increase after 72 hours of cell treatment with 4PYR as compared to control (0.40 ± 0.02 versus 0.29 ± 0.02 nmol/min/mg protein; 13.3 ± 0.6 versus 8.30 ± 0.34 nmol/min/mg protein, respectively, mean ± SEM). eADA activity decreases after 24 hours of cells treatment with 4PYR as compared to control (1.55 ± 0.06 versus 1.92 ± 0.13 nmol/min/mg protein, respectively, mean ± SEM). 4PYR and its derivatives have positive effect on ecto-enzymes related with ATP degradation pathway. We conclude that these increases in extracellular enzyme activities are an adaptive response to decreased intracellular ATP and NAD arising from 4PYR uptake. These changes may protect the cells from the inflammatory result of external ATP degradation.
Collapse
Affiliation(s)
- I Pelikant-Małecka
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - A Sielicka
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland.,b Structural Heart Research Lab, Division of Cardiothoracic Surgery, Emory University , Atlanta , Georgia , USA
| | - E Kaniewska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - R T Smoleński
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - E M Słomińska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
16
|
Lenglet A, Liabeuf S, Bodeau S, Louvet L, Mary A, Boullier A, Lemaire-Hurtel AS, Jonet A, Sonnet P, Kamel S, Massy ZA. N-methyl-2-pyridone-5-carboxamide (2PY)-Major Metabolite of Nicotinamide: An Update on an Old Uremic Toxin. Toxins (Basel) 2016; 8:toxins8110339. [PMID: 27854278 PMCID: PMC5127135 DOI: 10.3390/toxins8110339] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
N-methyl-2-pyridone-5-carboxamide (2PY, a major metabolite of nicotinamide, NAM) was recently identified as a uremic toxin. Recent interventional trials using NAM to treat high levels of phosphorus in end-stage renal disease have highlighted new potential uremic toxicities of 2PY. In the context of uremia, the accumulation of 2PY could be harmful-perhaps by inhibiting poly (ADP-ribose) polymerase-1 activity. Here, we review recently published data on 2PY's metabolism and toxicological profile.
Collapse
Affiliation(s)
- Aurélie Lenglet
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
- Department of Pharmacy, Amiens University Medical Center, Amiens 80000, France.
| | - Sophie Liabeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
- Clinical Research Centre and Division of Clinical Pharmacology, Amiens University Medical Center, Amiens 80000, France.
| | - Sandra Bodeau
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
- Laboratory of Pharmacology and Toxicology, Amiens University Medical Center, Amiens 80000, France.
| | - Loïc Louvet
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
| | - Aurélien Mary
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
- Department of Pharmacy, Amiens University Medical Center, Amiens 80000, France.
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
- Biochemistry Laboratory, Amiens University Medical Center, Amiens 80000, France.
| | | | - Alexia Jonet
- Laboratory of Glycochimie, des Antimicrobiens et des Agroressouces, Unité Mixte de Recherche-Centre National de la Recherché Scientifique (UMR CNRS) 7378, UFR de Pharmacy, Jules Verne University of Picardie, Amiens 80000, France.
| | - Pascal Sonnet
- Laboratory of Glycochimie, des Antimicrobiens et des Agroressouces, Unité Mixte de Recherche-Centre National de la Recherché Scientifique (UMR CNRS) 7378, UFR de Pharmacy, Jules Verne University of Picardie, Amiens 80000, France.
| | - Said Kamel
- Institut National de la Santé et de la Recherche Médicale (INSERM U-1088), Jules Verne University of Picardie, Amiens 80000, France.
- Biochemistry Laboratory, Amiens University Medical Center, Amiens 80000, France.
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris APHP, Boulogne, Billancourt, Paris 92100, France.
- INSERM U1018, Team 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Paris-Saclay University, and Paris Ouest-Versailles-Saint-Quentin-en-Yvelines University (UVSQ), Villejuif 94800, France.
| |
Collapse
|
17
|
Renal systems biology of patients with systemic inflammatory response syndrome. Kidney Int 2015; 88:804-14. [PMID: 25993322 PMCID: PMC4591107 DOI: 10.1038/ki.2015.150] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular weight proteins and acute phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and n-acetylaspartate were inversely correlated with the majority of significantly down-regulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness.
Collapse
|
18
|
Endothelial toxicity of unusual nucleotide metabolites. Pharmacol Rep 2015; 67:818-22. [PMID: 26321286 DOI: 10.1016/j.pharep.2015.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/20/2022]
Abstract
Endothelium plays a pivotal role in the vascular tone regulation, platelet aggregation, regulation of immune response, inflammation and angiogenesis and its dysfunction is an earliest event in the development of cardiovascular disease. All these processes are affected by endothelial dysfunction. Endothelial toxicity induced by metabolites present in blood is a common scenario in pathology. This involves physiological metabolites such as asymmetric dimethylarginine or homocysteine that are normally excreted by kidneys, but accumulate in pathological conditions, adversely affecting function of endothelium. Our group identified new molecule with potential endothelial toxicity: 4-pirydone-3-carboxamide-1-β-d-ribonucleoside (4PYR). This nucleoside is most likely produced by oxidation of nicotinamide containing precursor by aldehyde oxidase. 4PYR easy crosses cell membrane and become phosphorylated inside the cell giving rise to mono-, di- and triphospates (4PYMP, 4PYDP and 4PYTP). There is considerable evidence that 4PYR is toxic in endothelium and other cell types by disrupting cell energetics evident as ATP depletion. Endothelial dysfunction in the in vitro and in vivo experiments is, however, evident only after prolonged exposure to 4PYR while acute cardiovascular effects are minor. 4PYR endothelial toxicity could be particularly important in patients with chronic renal disease where accumulation of 4PYR and its metabolites is particularly prominent. 4PYR metabolism and toxicity could be blocked by application of nucleoside transport inhibitors and we have proven efficiency of such intervention. We believe that blocking metabolism of endothelial nucleoside toxins such as 4PYR could become important strategy for endothelial targeted therapy.
Collapse
|
19
|
Pelikant-Małecka I, Sielicka A, Kaniewska E, Smoleński RT, Słomińska EM. 4-Pyridone-3-carboxamide-1β-D-ribonucleoside metabolism in endothelial cells and its impact on cellular energetic balance. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:338-41. [PMID: 24940690 DOI: 10.1080/15257770.2014.889303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
4-Pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) is a naturally occurring compound related to nicotinamide that could be metabolized to mono-, di-, and triphosphates of 4PYR (4PYMP, 4PYDP, 4PYTP) and nicotinamide adenine dinucleotide (NAD) analogue (4PYRAD) in all types of cells. Previous studies demonstrated that formation of 4PYMP and 4PYTP was dependent on adenosine kinase activity. Pathway of 4PYRAD production is not yet identified, but most likely this process involves production of 4PYMP. This study aimed to evaluate influence of 4PYR on metabolism of endothelial cells and to test effect of nucleoside transport inhibitors. 4PYR was obtained by chemical synthesis. Endothelial cell line (HMEC-1) was incubated for 24 or 48 hours with 100 μM 4PYR. After incubation, cells were separated from medium and analyzed for concentrations of ATP, NAD, and 4PYR metabolites by using reversed-phase high performance liquid chromatography. We demonstrated progressive accumulation of 4PYR metabolites in endothelium that reached 33.2±0.8 nmol/mg protein for 4PYMP and 5.25±0.17 nmol/mg protein for 4PYRAD after 48-hour incubation with 4PYR. Dipyridamole protected from accumulation of 4PYR metabolites in endothelial cells. We conclude that endothelium is capable to convert 4PYR into intracellular metabolites and this causes disruption of cell energy balance. Nucleoside transport inhibition with dipyridamole could protect endothelium from this effect. This finding could be of clinical relevance in conditions associated with accumulation of 4PYR such as chronic renal disease.
Collapse
|
20
|
Kell DB, Goodacre R. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today 2014; 19:171-82. [PMID: 23892182 PMCID: PMC3989035 DOI: 10.1016/j.drudis.2013.07.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/03/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023]
Abstract
Metabolism represents the 'sharp end' of systems biology, because changes in metabolite concentrations are necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs. To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of the human metabolic network that include the important transporters. Small molecule 'drug' transporters are in fact metabolite transporters, because drugs bear structural similarities to metabolites known from the network reconstructions and from measurements of the metabolome. Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia: (i) the effects of inborn errors of metabolism; (ii) which metabolites are exometabolites, and (iii) how metabolism varies between tissues and cellular compartments. However, even these qualitative network models are not yet complete. As our understanding improves so do we recognise more clearly the need for a systems (poly)pharmacology.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|