1
|
Zheng H, Yang B, Xu D, Wang W, Tan J, Sun L, Li Q, Sun L, Xia X. Induction of specific T helper-9 cells to inhibit glioma cell growth. Oncotarget 2018; 8:4864-4874. [PMID: 28002799 PMCID: PMC5354876 DOI: 10.18632/oncotarget.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of Staphylococcal enterotoxin B (SEB) on regulation of immune response have been recognized; whether SEB can enhance the effects of immunotherapy on glioma remains to be investigated. This study tests a hypothesis that administration with SEB enhances the effects of specific immunotherapy on glioma growth in mice. In this study, a glioma-bearing mouse model was developed by adoptive transfer with GL261 cells (a mouse glioma cell line). The mice were treated with the GL261 cell extracts (used as an Ag) with or without administration of SEB. We observed that treating glioma-bearing mice with the glioma Ag and SEB induced glioma-specific Th9 cells in both glioma tissue and the spleen. Treating CD4+ CD25− T cells with SEB increased p300 phosphorylation, histone H3K4 acetylation at the interleukin (IL)-9 promoter locus, and increased the IL-9 transcriptional factor binding to the IL-9 promoter. Treating CD4+ CD25− T cells with both SEB and glioma Ag induced glioma-specific Th9 cells. The glioma-specific Th9 cells induced glioma cell apoptosis in the culture. Treating the glioma-bearing mice with SEB and glioma Ag significantly inhibited the glioma growth. In conclusion, SEB plus glioma Ag immunotherapy inhibits the experimental glioma growth, which may be a novel therapeutic remedy for the treatment of glioma.
Collapse
Affiliation(s)
- Haiyan Zheng
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Baohua Yang
- Department of Neurosurgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, China
| | - Dedong Xu
- Department of Neurosurgery, Hainan General Hospital, Haikou, 570311, China
| | - Wenbo Wang
- Department of Neurosurgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Liyuan Sun
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Qinghua Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Li Sun
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| | - Xuewei Xia
- Department of Neurosurgery, Guilin Medical University, Affiliated Hospital, Guilin, 541001, China.,Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541001, China
| |
Collapse
|
2
|
Wang K, Wu D, Chen Z, Zhang X, Yang X, Yang CJ, Lan X. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon 2016; 119:21-7. [DOI: 10.1016/j.toxicon.2016.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
|
3
|
McIver ZA, Grayson JM, Coe BN, Hill JE, Schamerhorn GA, Ohulchanskyy TY, Linder MK, Davies KS, Weiner RS, Detty MR. Targeting T Cell Bioenergetics by Modulating P-Glycoprotein Selectively Depletes Alloreactive T Cells To Prevent Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2016; 197:1631-41. [PMID: 27456485 DOI: 10.4049/jimmunol.1402445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
T lymphocytes play a central role in many human immunologic disorders, including autoimmune and alloimmune diseases. In hematopoietic stem cell transplantation, acute graft-versus-host-disease (GVHD) is caused by an attack on the recipient's tissues from donor allogeneic T cells. Selectively depleting GVHD-causing cells prior to transplant may prevent GVHD. In this study, we evaluated 24 chalcogenorhodamine photosensitizers for their ability to selectively deplete reactive T lymphocytes and identified the photosensitizer 2-Se-Cl, which accumulates in stimulated T cells in proportion to oxidative phosphorylation. The photosensitizer is also a potent stimulator of P-glycoprotein (P-gp). Enhanced P-gp activity promotes the efficient removal of photosensitizer not sequestered in mitochondria and protects resting lymphocytes that are essential for antipathogen and antitumor responses. To evaluate the selective depletion of alloimmune responses, donor C57BL/6 splenocytes were cocultured for 5 d with irradiated BALB/c splenocytes and then photodepleted (PD). PD-treated splenocytes were infused into lethally irradiated BALB/c (same-party) or C3H/HeJ (third-party) mice. Same-party mice that received PD-treated splenocytes at the time of transplant lived 100 d without evidence of GVHD. In contrast, all mice that received untreated primed splenocytes and third-party mice that received PD-treated splenocytes died of lethal GVHD. To evaluate the preservation of antiviral immune responses, acute lymphocytic choriomeningitis virus infection was used. After photodepletion, expansion of Ag-specific naive CD8(+) T cells and viral clearance remained fully intact. The high selectivity of this novel photosensitizer may have broad applications and provide alternative treatment options for patients with T lymphocyte-mediated diseases.
Collapse
Affiliation(s)
- Zachariah A McIver
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157;
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Benjamin N Coe
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Jacqueline E Hill
- Department of Chemistry, State University of New York, Buffalo, NY 14260
| | | | - Tymish Y Ohulchanskyy
- Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, State University of New York, Buffalo, NY 14260; and
| | - Michelle K Linder
- Department of Chemistry, State University of New York, Buffalo, NY 14260
| | - Kellie S Davies
- Department of Chemistry, State University of New York, Buffalo, NY 14260
| | - Roy S Weiner
- Department of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Michael R Detty
- Department of Chemistry, State University of New York, Buffalo, NY 14260; Institute for Lasers, Photonics, and Biophotonics, Department of Chemistry, State University of New York, Buffalo, NY 14260; and
| |
Collapse
|
4
|
Fursova KK, Shchannikova MP, Shepelyakovskaya AO, Pavlik LL, Brovko FA. Staphylococcal enterotoxin a detection with phage displayed antibodies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016020035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Two common structural motifs for TCR recognition by staphylococcal enterotoxins. Sci Rep 2016; 6:25796. [PMID: 27180909 PMCID: PMC4867771 DOI: 10.1038/srep25796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
Superantigens are toxins produced by Staphylococcus aureus, called staphylococcal enterotoxins (abbreviated SEA to SEU). They can cross-link the T cell receptor (TCR) and major histocompatibility complex class II, triggering a massive T cell activation and hence disease. Due to high stability and toxicity, superantigens are potential agents of bioterrorism. Hence, antagonists may not only be useful in the treatment of disease but also serve as countermeasures to biological warfare. Of particular interest are inhibitors against SEA and SEB. SEA is the main cause of food poisoning, while SEB is a common toxin manufactured as a biological weapon. Here, we present the crystal structures of SEA in complex with TCR and SEE in complex with the same TCR, complemented with computational alanine-scanning mutagenesis of SEA, SEB, SEC3, SEE, and SEH. We have identified two common areas that contribute to the general TCR binding for these superantigens. This paves the way for design of single antagonists directed towards multiple toxins.
Collapse
|
6
|
|
7
|
Inhibition of squamous cancer growth in a mouse model by Staphylococcal enterotoxin B-triggered Th9 cell expansion. Cell Mol Immunol 2015; 14:371-379. [PMID: 26388239 DOI: 10.1038/cmi.2015.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
Currently, therapy for squamous cancer (SqC) is unsatisfactory. Staphylococcal enterotoxin B (SEB) has strong immune regulatory activity. This study tests the hypothesis that SEB enforces the effect of immunotherapy on SqC growth in a mouse model. C3H/HeN mice and the SqC cell line squamous cell carcinoma VII were used to create an SqC mouse model. Immune cell assessment was performed by flow cytometry. Real-time RT-PCR and western blotting were used to evaluate target molecule expression. An apoptosis assay was used to assess the suppressive effect of T helper-9 (Th9) cells on the SqC cells. The results showed that immunotherapy consisting of SEB plus SqC antigen significantly inhibited SqC growth in the mice. The frequency of Th9 cells was markedly increased in the SqC tissue and mouse spleens after treatment. SEB markedly increased the levels of signal transducer and activator of transcription 5 phosphorylation and the expression of histone deacetylase-1 (HDAC1) and PU.1 (the transcription factor of the interleukin 9 (IL-9) gene) in CD4+ T cells. Exposure to SqC-specific Th9 cells markedly induced SqC cell apoptosis both in vitro and in vivo. In conclusion, the administration of SEB induces Th9 cells in SqC-bearing mice, and theseTh9 cells inhibit SqC growth.
Collapse
|
8
|
Sharma P, Wang N, Chervin AS, Quinn CL, Stone JD, Kranz DM. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins. PLoS One 2015; 10:e0135986. [PMID: 26305471 PMCID: PMC4549143 DOI: 10.1371/journal.pone.0135986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Ningyan Wang
- ImmuVen, Inc., University of Illinois Research Park, Champaign, Illinois, United States of America
| | - Adam S. Chervin
- ImmuVen, Inc., University of Illinois Research Park, Champaign, Illinois, United States of America
| | - Cheryl L. Quinn
- ImmuVen, Inc., University of Illinois Research Park, Champaign, Illinois, United States of America
| | - Jennifer D. Stone
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|