1
|
Heptinstall TC, Rosales García RA, Rautsaw RM, Myers EA, Holding ML, Mason AJ, Hofmann EP, Schramer TD, Hogan MP, Borja M, Castañeda-Gaytán G, Feldman CR, Rokyta DR, Parkinson CL. Dietary Breadth Predicts Toxin Expression Complexity in the Venoms of North American Gartersnakes. Integr Org Biol 2025; 7:obaf003. [PMID: 39959576 PMCID: PMC11822205 DOI: 10.1093/iob/obaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Selection on heritable phenotypic variation has played a prominent role in shaping the remarkable adaptations found across the Tree of Life. Complex ecological traits, such as snake venoms, are thought to be the products of selection because they directly link to fitness and survival. Snake venom increases the efficiency of prey capture and processing and is thus likely under intense selection. While many studies of snake venom have investigated the relationship between venom and diet, they have primarily focused on medically relevant front-fanged snakes. However, recent work has suggested that many non-front fanged snakes also rely on venom for subduing prey, despite having reduced toxicity toward humans. Here, we set out to uncover variation in toxin-producing genes, along with the ecological and evolutionary pressures impacting snake venom characteristics in the North American gartersnakes (Squamata: Natricidae: Thamnophis), a model group of non-front-fanged snakes. We annotated and analyzed Duvernoy's venom gland transcriptomes from 16 species representing all the major lineages within Thamnophis. We then generated measures of complexity of both toxins and dietary breadth. We found strong correlations between the complexity of toxin gene expression and phylogenetic diversity of diet, but no relationship between the complexity of the genetic makeup of the transcriptomes (allelic or sequence variation) and diet complexities. We also found phylogenetic signal associated with venom complexity, suggesting some influence of ancestry on venom characteristics. We suggest that, in non-front-fanged snakes, expression of toxins rather than sequence complexity is under strong selection by dietary diversity. These findings contradict similar studies from front-fanged snakes where increased transcriptomic complexity varies positively with dietary diversity, exposing a potential novel relationship between a complex phenotype-toxin expression-and its selective pressures-diet.
Collapse
Affiliation(s)
- T C Heptinstall
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R A Rosales García
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - R M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - E A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - M L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - A J Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - E P Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Science Department, Cape Fear Community College, Wilmington, NC 28401, USA
| | - T D Schramer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - M P Hogan
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - M Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - G Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - C R Feldman
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - D R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - C L Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Vonk FJ, Bittenbinder MA, Kerkkamp HMI, Grashof DGB, Archer JP, Afonso S, Richardson MK, Kool J, van der Meijden A. A non-lethal method for studying scorpion venom gland transcriptomes, with a review of potentially suitable taxa to which it can be applied. PLoS One 2021; 16:e0258712. [PMID: 34793470 PMCID: PMC8601437 DOI: 10.1371/journal.pone.0258712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time. This paper describes a new way of generating a scorpion venom gland transcriptome without sacrificing the animal, thereby allowing the study of the transcriptome at various time points within a single individual. By comparing these venom-derived transcriptomes to the traditional whole-telson transcriptomes we show that the relative expression levels of the major toxin classes are similar. We further performed a multi-day extraction using our proposed method to show the possibility of doing a multiple time point transcriptome analysis. This allows for the study of patterns of toxin gene activation over time a single individual, and allows assessment of the effects of diet, season and other factors that are known or likely to influence intraindividual venom composition. We discuss the gland characteristics that may allow this method to be successful in scorpions and provide a review of other venomous taxa to which this method may potentially be successfully applied.
Collapse
Affiliation(s)
- Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Mátyás A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harald M. I. Kerkkamp
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - John P. Archer
- CIBIO-InBIO, Biopolis, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO-InBIO, Biopolis, Universidade do Porto, Porto, Portugal
| | - Michael K. Richardson
- Animal Science and Health Cluster, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jeroen Kool
- Faculty of Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
3
|
Stewart J, Bino G, Hawke T, Kingsford RT. Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses. Sci Rep 2021; 11:15932. [PMID: 34354187 PMCID: PMC8342447 DOI: 10.1038/s41598-021-95544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Platypuses (Ornithorhynchus anatinus) inhabit the permanent rivers and creeks of eastern Australia, from north Queensland to Tasmania, but are experiencing multiple and synergistic anthropogenic threats. Baseline information of health is vital for effective monitoring of populations but is currently sparse for mainland platypuses. Focusing on seven hematology and serum chemistry metrics as indicators of health and nutrition (packed cell volume (PCV), total protein (TP), albumin, globulin, urea, creatinine, and triglycerides), we investigated their variation across the species' range and across seasons. We analyzed 249 unique samples collected from platypuses in three river catchments in New South Wales and Victoria. Health metrics significantly varied across the populations' range, with platypuses from the most northerly catchment, having lower PCV, and concentrations of albumin and triglycerides and higher levels of globulin, potentially reflecting geographic variation or thermal stress. The Snowy River showed significant seasonal patterns which varied between the sexes and coincided with differential reproductive stressors. Male creatinine and triglyceride levels were significantly lower than females, suggesting that reproduction is energetically more taxing on males. Age specific differences were also found, with juvenile PCV and TP levels significantly lower than adults. Additionally, the commonly used body condition index (tail volume index) was only negatively correlated with urea, and triglyceride levels. A meta-analysis of available literature revealed a significant latitudinal relationship with PCV, TP, albumin, and triglycerides but this was confounded by variation in sampling times and restraint methods. We expand understanding of mainland platypuses, providing reference intervals for PCV and six blood chemistry, while highlighting the importance of considering seasonal variation, to guide future assessments of individual and population condition.
Collapse
Affiliation(s)
- Jana Stewart
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia.
| | - Gilad Bino
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Tahneal Hawke
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Richard T Kingsford
- Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Venom Use in Eulipotyphlans: An Evolutionary and Ecological Approach. Toxins (Basel) 2021; 13:toxins13030231. [PMID: 33810196 PMCID: PMC8004749 DOI: 10.3390/toxins13030231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need for food acquisition seem to be the most important for solenodons and especially for shrews. We also present several hypotheses explaining why, despite so many potentially beneficial functions, venomousness is rare even among eulipotyphlans. The tentativeness of many of the arguments presented in this review highlights our main conclusion, i.e., insights regarding the functions of eulipotyphlan venoms merit additional study.
Collapse
|
5
|
|
6
|
Barkan NP, Chevalier M, Pradervand JN, Guisan A. Alteration of Bumblebee Venom Composition toward Higher Elevation. Toxins (Basel) 2019; 12:toxins12010004. [PMID: 31861682 PMCID: PMC7020474 DOI: 10.3390/toxins12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, for either predation or defense. Bumblebees, which occur in various habitats due to their unique thermoregulatory properties, mainly use venom for defense. Herein, we conducted an exploratory analysis of the venom composition of a bumblebee species (Bombus pascuorum) along an elevation gradient in the western Swiss Alps using shot-gun proteomic approaches to assess whether their defense mechanism varies along the gradient. The gradient was characterized by high temperatures and low humidity at low elevations and low temperatures and high humidity at high elevations. Venom composition is changing along the elevation gradient, with proteomic variation in the abundances of pain-inducing and allergenic proteins. In particular, the abundance of phospholipase A2-like, the main component of bumblebee venom, gradually decreases toward higher elevation (lower temperature), suggesting venom alteration and thus a decrease in bumblebee defense towards harsher environments. Larger datasets may complement this study to validate the observed novel trends.
Collapse
Affiliation(s)
- Nezahat Pınar Barkan
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
| | - Mathieu Chevalier
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
| | - Jean-Nicolas Pradervand
- Swiss Ornithological Institute, Valais Field Station, Rue du Rhône 11, CH-1950 Sion, Switzerland;
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Géopolis, Lausanne, Switzerland
- Correspondence: ; Tel.: +41-(0)21-692-42-54
| |
Collapse
|
7
|
Schendel V, Rash LD, Jenner RA, Undheim EAB. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins (Basel) 2019; 11:E666. [PMID: 31739590 PMCID: PMC6891279 DOI: 10.3390/toxins11110666] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Venoms are one of the most convergent of animal traits known, and encompass a much greater taxonomic and functional diversity than is commonly appreciated. This knowledge gap limits the potential of venom as a model trait in evolutionary biology. Here, we summarize the taxonomic and functional diversity of animal venoms and relate this to what is known about venom system morphology, venom modulation, and venom pharmacology, with the aim of drawing attention to the importance of these largely neglected aspects of venom research. We find that animals have evolved venoms at least 101 independent times and that venoms play at least 11 distinct ecological roles in addition to predation, defense, and feeding. Comparisons of different venom systems suggest that morphology strongly influences how venoms achieve these functions, and hence is an important consideration for understanding the molecular evolution of venoms and their toxins. Our findings also highlight the need for more holistic studies of venom systems and the toxins they contain. Greater knowledge of behavior, morphology, and ecologically relevant toxin pharmacology will improve our understanding of the evolution of venoms and their toxins, and likely facilitate exploration of their potential as sources of molecular tools and therapeutic and agrochemical lead compounds.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Lachlan D. Rash
- School of Biomedical Sciences, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
8
|
Neerukonda M, Pavuluri S, Sharma I, Kumar A, Sailasree P, Lakshmi JB, Sharp JA, Kumar S. Functional evaluation of a monotreme-specific antimicrobial protein, EchAMP, against experimentally induced mastitis in transgenic mice. Transgenic Res 2019; 28:573-587. [PMID: 31599375 DOI: 10.1007/s11248-019-00174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
EchAMP, the tenth most abundant transcript expressed in the mammary gland of echidna, has in vitro broad-spectrum antibacterial effects. However, the effects of EchAMP on mastitis, a condition where inflammation is triggered following mammary gland infection, has not been investigated. To investigate the impact of EchAMP against mastitis, EchAMP transgenic mice were generated. In antibacterial assays, the whey fractions of milk from transgenic mice significantly reduced growth of Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa compared with whey fractions from wildtype mice. Furthermore, a mastitis model created by infecting mammary gland with these four bacterial strains displayed a significant reduction in bacterial load in transgenic mice injected with S. aureus and B. subtilis. On further confirmation, histomorphologic analysis showed absence of necrosis and cell infiltration in the mammary glands of transgenic mice. To understand the role of EchAMP against inflammation, we employed an LPS-injected mastitis mouse model. LPS is known to induce phopshorylation of NF-κB and MAPK pathways, which in turn activate downstream proinflammatory signaling mediators, to promote inflammation. In LPS-treated EchAMP transgenic mice, phosphorylation levels of NF-κB, p38 and ERK1/2 were significantly downregulated. Furthermore, in mammary gland of transgenic mice, there was a significant downregulation of mRNA levels of proinflammatory cytokines, namely TNF-α, IL-6 and IL-1β. Taken together, these data suggest that EchAMP has an antiinflammatory response and is effective against S. aureus and B. subtilis. We suggest that EchAMP may be a potential prophylactic protein against mastitis in dairy animals by expressing this gene in their mammary gland.
Collapse
Affiliation(s)
- Manjusha Neerukonda
- Centre for Cellular and Molecular Biology, Hyderabad, India.,University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | | | - Isha Sharma
- Centre for Cellular and Molecular Biology, Hyderabad, India.,Northwestern University, Chicago, IL, USA
| | - Alok Kumar
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Australia
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Hyderabad, India. .,Department of Biotechnology, School of Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
9
|
Bino G, Kingsford RT, Archer M, Connolly JH, Day J, Dias K, Goldney D, Gongora J, Grant T, Griffiths J, Hawke T, Klamt M, Lunney D, Mijangos L, Munks S, Sherwin W, Serena M, Temple-Smith P, Thomas J, Williams G, Whittington C. The platypus: evolutionary history, biology, and an uncertain future. J Mammal 2019; 100:308-327. [PMID: 31043761 PMCID: PMC6479513 DOI: 10.1093/jmammal/gyz058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
The platypus (Ornithorhynchus anatinus) is one of the world's most evolutionarily distinct mammals, one of five extant species of egg-laying mammals, and the only living species within the family Ornithorhynchidae. Modern platypuses are endemic to eastern mainland Australia, Tasmania, and adjacent King Island, with a small introduced population on Kangaroo Island, South Australia, and are widely distributed in permanent river systems from tropical to alpine environments. Accumulating knowledge and technological advancements have provided insights into many aspects of its evolutionary history and biology but have also raised concern about significant knowledge gaps surrounding distribution, population sizes, and trends. The platypus' distribution coincides with many of Australia's major threatening processes, including highly regulated and disrupted rivers, intensive habitat destruction, and fragmentation, and they were extensively hunted for their fur until the early 20th century. Emerging evidence of local population declines and extinctions identifies that ecological thresholds have been crossed in some populations and, if threats are not addressed, the species will continue to decline. In 2016, the IUCN Red Listing for the platypus was elevated to "Near Threatened," but the platypus remains unlisted on threatened species schedules of any Australian state, apart from South Australia, or nationally. In this synthesis, we review the evolutionary history, genetics, biology, and ecology of this extraordinary mammal and highlight prevailing threats. We also outline future research directions and challenges that need to be met to help conserve the species.
Collapse
Affiliation(s)
- Gilad Bino
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard T Kingsford
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Archer
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Joanne H Connolly
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Graham Centre for Agricultural Innovation, Wagga Wagga, New South Wales, Australia
| | - Jenna Day
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Kimberly Dias
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - David Goldney
- Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Tom Grant
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Tahneal Hawke
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa Klamt
- Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Daniel Lunney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Office of Environment and Heritage, Hurstville, New South Wales, Australia
| | - Luis Mijangos
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah Munks
- School of Biological Sciences, University of Tasmania, Tasmania, Australia.,Forest Practices Authority, Hobart, Tasmania, Australia
| | - William Sherwin
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Melody Serena
- Australian Platypus Conservancy, Wiseleigh, Victoria, Australia
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Southern Clinical School, Monash University, Clayton, Victoria, Australia
| | | | - Geoff Williams
- Australian Platypus Conservancy, Wiseleigh, Victoria, Australia
| | - Camilla Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Evaluation of the physiological activity of venom from the Eurasian water shrew Neomys fodiens. Front Zool 2017; 14:46. [PMID: 29026428 PMCID: PMC5622582 DOI: 10.1186/s12983-017-0230-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Animal toxins can have medical and therapeutic applications. Principally, toxins produced by insects, arachnids, snakes and frogs have been characterized. Venomous mammals are rare, and their venoms have not been comprehensively investigated. Among shrews, only the venom of Blarina brevicauda has been analysed so far, and blarina toxin has been proven to be its main toxic component. It is assumed that Neomys fodiens employs its venom to hunt larger prey. However, the toxic profile, properties and mode of action of its venom are largely unknown. Therefore, we analysed the cardio-, myo- and neurotropic properties of N. fodiens venom and saliva of non-venomous Sorex araneus (control tests) in vitro in physiological bioassays carried out on two model organisms: beetles and frogs. For the first time, we fractionated N. fodiens venom and S. araneus saliva by performing chromatographic separation. Next, the properties of selected compounds were analysed in cardiotropic bioassays in the Tenebrio molitor heart. Results The venom of N. fodiens caused a high decrease in the conduction velocity of the frog sciatic nerve, as well as a significant decrease in the force of frog calf muscle contraction. We also recorded a significant decrease in the frog heart contractile activity. Most of the selected compounds from N. fodiens venom displayed a positive chronotropic effect on the beetle heart. However, one fraction caused a strong decrease in the T. molitor heart contractile activity coupled with a reversible cardiac arrest. We did not observe any responses of the insect heart and frog organs to the saliva of S. araneus. Preliminary mass spectrometry analysis revealed that calmodulin-like protein, thymosin β-10, hyaluronidase, lysozyme C and phospholipase A2 are present in the venom of N. fodiens, whereas thymosin β4, lysozyme C and β-defensin are present in S. araneus saliva. Conclusion Our results showed that N. fodiens venom has stronger paralytic properties and lower cardioinhibitory activity. Therefore, it is highly probable that N. fodiens might use its venom as a prey immobilizing agent. We also confirmed that S. araneus is not a venomous mammal because its saliva did not exhibit any toxic effects. Electronic supplementary material The online version of this article (10.1186/s12983-017-0230-0) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Goyffon M, Saul F, Faure G. [Relationships between venomous function and innate immune function]. Biol Aujourdhui 2016; 209:195-210. [PMID: 26820828 DOI: 10.1051/jbio/2015018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 06/05/2023]
Abstract
Venomous function is investigated in relation to innate immune function in two cases selected from scorpion venom and serpent venom. In the first case, structural analysis of scorpion toxins and defensins reveals a close interrelation between both functions (toxic and innate immune system function). In the second case, structural and functional studies of natural inhibitors of toxic snake venom phospholipases A2 reveal homology with components of the innate immune system, leading to a similar conclusion. Although there is a clear functional distinction between neurotoxins, which act by targeting membrane ion channels, and the circulating defensins which protect the organism from pathogens, the scorpion short toxins and defensins share a common protein folding scaffold with a conserved cysteine-stabilized alpha-beta motif of three disulfide bridges linking a short alpha helix and an antiparallel beta sheet. Genomic analysis suggests that these proteins share a common ancestor (long venom toxins were separated from an early gene family which gave rise to separate short toxin and defensin families). Furthermore, a scorpion toxin has been experimentally synthetized from an insect defensin, and an antibacterial scorpion peptide, androctonin (whose structure is similar to that of a cone snail venom toxin), was shown to have a similar high affinity for the postsynaptic acetylcholine receptor of Torpedo sp. Natural inhibitors of phospholipase A2 found in the blood of snakes are associated with the resistance of venomous snakes to their own highly neurotoxic venom proteins. Three classes of phospholipases A2 inhibitors (PLI-α, PLI-β, PLI-γ) have been identified. These inhibitors display diverse structural motifs related to innate immune proteins including carbohydrate recognition domains (CRD), leucine rich repeat domains (found in Toll-like receptors) and three finger domains, which clearly differentiate them from components of the adaptive immune system. Thus, in structure, function and phylogeny, venomous function in both vertebrates and invertebrates are clearly interrelated with innate immune function.
Collapse
Affiliation(s)
- Max Goyffon
- UMR CNRS 7245, Département RDDM, Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Frederick Saul
- Institut Pasteur, Plate-forme de Cristallographie, CNRS-UMR 3528, 25 rue du Docteur Roux, 75015 Paris, France
| | - Grazyna Faure
- Institut Pasteur, Unité Récepteurs-Canaux, CNRS-UMR 3571, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
12
|
Cabinet of Curiosities: Venom Systems and Their Ecological Function in Mammals, with a Focus on Primates. Toxins (Basel) 2015; 7:2639-58. [PMID: 26193318 PMCID: PMC4516934 DOI: 10.3390/toxins7072639] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 11/17/2022] Open
Abstract
Venom delivery systems (VDS) are common in the animal kingdom, but rare amongst mammals. New definitions of venom allow us to reconsider its diversity amongst mammals by reviewing the VDS of Chiroptera, Eulipotyphla, Monotremata, and Primates. All orders use modified anterior dentition as the venom delivery apparatus, except Monotremata, which possesses a crural system. The venom gland in most taxa is a modified submaxillary salivary gland. In Primates, the saliva is activated when combined with brachial gland exudate. In Monotremata, the crural spur contains the venom duct. Venom functions include feeding, intraspecific competition, anti-predator defense and parasite defense. Including mammals in discussion of venom evolution could prove vital in our understanding protein functioning in mammals and provide a new avenue for biomedical and therapeutic applications and drug discovery.
Collapse
|