1
|
Bejarano-Mendoza FO, Gómez-Ramírez IV, Cortés Guzmán AJ, Becerril B, Possani LD, Cid-Uribe JI, González-Santillán E. Disparity among venom components, and morphometrics in Centruroides baergi Hoffmann, 1932, a medically relevant scorpion species from Mexico. Toxicon 2025; 259:108370. [PMID: 40280445 DOI: 10.1016/j.toxicon.2025.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Centruroides baergi is a scorpion species distributed in the biogeographical province of the Balsas Basin in Mexico. Health officials have reported acute envenomation in human populations living on the western side of this scorpion's range, but none in the eastern region. This disparity in toxicity suggested that there may be two distinct species. We used two different approaches, including venom analysis and morphometric specimens from both regions, to test our hypothesis. We performed chromatographic, electrophoretic, and mass spectrometry analysis to identify the known β-toxins involved in the intoxication. The most remarkable finding was the absence of Cb3 β-toxin in the eastern population. Consequently, the LD50 of the eastern population was lower than that of the western population. We analyzed linear and ratio body measurements with parametric and nonparametric statistics to test species limits. These analyses indicated that all putative populations of C. baergi are significantly similar, suggesting that they may represent a single species. Unexpectedly, the population of scorpions in the center of the study area, Suchixtlahuaca, previously identified as C. baergi, showed significant morphological and venom composition differences. We provided empirical evidence of an abrupt change of highly toxic peptides around the 98th meridian that limits populations of Centruroides baergi to the east of Mexico.
Collapse
Affiliation(s)
- Fernando O Bejarano-Mendoza
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito, S/N Ciudad Universitaria Coyoacán, CDMX, C.P. 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Tercer Circuito, S/N Ciudad Universitaria Coyoacán, CDMX, C.P. 04510, Mexico
| | - Ilse Viridiana Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Antonio Juan Cortés Guzmán
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero Lázaro Cárdenas, El Centenario, 39086, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Jimena I Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Edmundo González-Santillán
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito, S/N Ciudad Universitaria Coyoacán, CDMX, C.P. 04510, Mexico.
| |
Collapse
|
2
|
Ait Laaradia M, Laadraoui J, Ettitaou A, Agouram F, Oubella K, Moubtakir S, Aboufatima R, Chait A. Variation in venom yield, protein concentration and regeneration toxicity in the scorpion Buthus lienhardi. Toxicon 2025; 255:108254. [PMID: 39862930 DOI: 10.1016/j.toxicon.2025.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Scorpion venom research aims to develop treatments for dangerous species and identify candidates for new drugs. The extraction of high-quality venom, which is essential, requires mastery of the extraction and maintenance of scorpions. It is in this perspective that we have undertaken this present work which aims to contribute to scientifically mastering venom yields and the factors that influence them in scorpions. Two experiments were conducted. In the first, the volume yield and protein concentration of venom from 121 Buthus lienhardi scorpions were examined according to their size, sex, mass and place of origin. In the second experiment, the quality and quantity of venom regenerated over 30 days after extraction were measured on 80 scorpions, with samples collected at different time points (8 H, 16 H, 24 H, 32 H, 48 H, 3 days (D), 7 D, 11 D, 15 D and 30 D). In addition, the toxicity of venom samples collected from mice at different stages was evaluated. The volume of venom extracted by electrical stimulation was linearly related to body length. Body length and protein concentration were not correlated. When considering the multiple influences on production volume in Buthus lienhardi, the most important factor was body length, but volume was also positively associated with mesosome length and relative body mass. Male scorpions produced a greater volume of venom with a higher protein concentration than females. For venom regeneration, the volume of venom extracted after depletion showed a significant increase over the days, reaching a complete recovery by day 11. In contrast, protein regeneration and toxicity were slower than that of volume, with a complete recovery observed by day 15. This study should lead to the design of better venom extraction protocols for several studies such as treatment development, basic research and especially for drug development.
Collapse
Affiliation(s)
- Mehdi Ait Laaradia
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Higher Institute of Nursing Professions and Health Techniques, Ministry of Health and Social Protection, Beni Mellal, Morocco.
| | - Jawad Laadraoui
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco; Laboratory of Physiopathology, Genetic Molecular and Biotechnology, Faculty of Sciences, Aïn Chock, Hassan II University, Casablanca, Morocco
| | - Amina Ettitaou
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Fatimzahra Agouram
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Khadija Oubella
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Soad Moubtakir
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Biological Engineering, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni Mellal, 23000, Morocco
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences, Semlalia, University Cadi Ayyad, BP 2390-40080, Marrakech, Morocco
| |
Collapse
|
3
|
Campbell SID, Chow CY, Neri-Castro E, Alagón A, Gómez A, Soria R, King GF, Fry BG. Taking the sting out of scorpions: Electrophysiological investigation of the relative efficacy of three antivenoms against medically significant Centruroides species. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109977. [PMID: 39025425 DOI: 10.1016/j.cbpc.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.
Collapse
Affiliation(s)
- Sam I D Campbell
- Adaptive Biotoxicology lab, School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edgar Neri-Castro
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010 Gómez Palacio, Durango, Mexico; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Aarón Gómez
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Raúl Soria
- Inosan Biopharma S.A. Arbea Campus Empresarial, Edificio 2. Planta 2, Carretera Fuencarral a Alcobendas, Km. 3.8, 28108 Alcobendas, Madrid, Spain
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bryan G Fry
- Adaptive Biotoxicology lab, School of the Environment, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Nasr S, Borges A, Sahyoun C, Nasr R, Roufayel R, Legros C, Sabatier JM, Fajloun Z. Scorpion Venom as a Source of Antimicrobial Peptides: Overview of Biomolecule Separation, Analysis and Characterization Methods. Antibiotics (Basel) 2023; 12:1380. [PMID: 37760677 PMCID: PMC10525675 DOI: 10.3390/antibiotics12091380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
Scorpion venoms have long captivated scientific researchers, primarily due to the potency and specificity of the mechanism of action of their derived components. Among other molecules, these venoms contain highly active compounds, including antimicrobial peptides (AMPs) and ion channel-specific components that selectively target biological receptors with remarkable affinity. Some of these receptors have emerged as prime therapeutic targets for addressing various human pathologies, including cancer and infectious diseases, and have served as models for designing novel drugs. Consequently, extensive biochemical and proteomic investigations have focused on characterizing scorpion venoms. This review provides a comprehensive overview of the key methodologies used in the extraction, purification, analysis, and characterization of AMPs and other bioactive molecules present in scorpion venoms. Noteworthy techniques such as gel electrophoresis, reverse-phase high-performance liquid chromatography, size exclusion chromatography, and "omics" approaches are explored, along with various combinations of methods that enable bioassay-guided venom fractionation. Furthermore, this review presents four adapted proteomic workflows that lead to the comprehensive dissection of the scorpion venom proteome, with an emphasis on AMPs. These workflows differ based on whether the venom is pre-fractionated using separation techniques or is proteolytically digested directly before further proteomic analyses. Since the composition and functionality of scorpion venoms are species-specific, the selection and sequence of the techniques for venom analyses, including these workflows, should be tailored to the specific parameters of the study.
Collapse
Affiliation(s)
- Sara Nasr
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
| | - Adolfo Borges
- Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas 50587, Venezuela;
- Centro para el Desarrollo de la Investigación Científica, Asunción 1255, Paraguay
| | - Christina Sahyoun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, 49000 Angers, France
| | - Riad Nasr
- Department of Physical Therapy, Faculty of Public Health 3, Lebanese University, Tripoli 1200, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, 49000 Angers, France
| | - Jean-Marc Sabatier
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (S.N.); (C.S.)
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| |
Collapse
|
5
|
Estrada-Gomez S, Núñez V, Vargas-Muñoz LJ, Madrid-Bracamonte CA, Preciado LM. Characterization of a Lab-Scale Process to Produce Whole IgG Antivenom Covering Scorpion Stings by Genus Tityus and Centruroides of Colombia. Pharmaceuticals (Basel) 2022; 15:ph15091047. [PMID: 36145268 PMCID: PMC9502926 DOI: 10.3390/ph15091047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Scorpion stings are a public health event in Colombia lacking official epidemiological data, and are considered a medical emergency. Despite the two local producers of antivenoms, neither of them is currently manufacturing scorpion antivenoms. We present the characterization of a lab-scale process to produce the first specific scorpion antivenom for Colombia, formulated to cover scorpion stings produced by Tityus pachyurus, Tityus asthenes, Tityus fuhrmanii, Centruroides spp. To do so, rabbits were immunized by subcutaneous injection with each venom using an immunization program of 3 months. After each rabbit reached the required IgG concentration, rabbits were bled, and plasma was separated by decantation under refrigeration. Immunoglobulins were purified from each hyperimmune plasma using a methodology including precipitation with ammonium sulfate, thermocoagulation, and purification through an ultrafiltration process using a ready-to-use and reusable laboratory crossflow tangential cassette with a polyethersulfone membrane. Each hyperimmune plasma was processed by being separated and freeze-dried at the end of the process. Rabbits were able to produce specific IgG antibodies recognizing the respective immunization venom; even an in vitro interspecies cross-recognition was detected. The separation and purification processes allowed us to obtain IgG products without considerable contaminants (except for albumin). The process was characterized, and critical stages were identified.
Collapse
Affiliation(s)
- Sebastian Estrada-Gomez
- Grupo de Toxinología y Alternativas Terapeuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellin 050010, Colombia
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia
- Correspondence: or ; Tel.: +57-604-2192315 or +57-604-2196535
| | - Vitelbina Núñez
- Grupo de Toxinología y Alternativas Terapeuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellin 050010, Colombia
- Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Leidy Johana Vargas-Muñoz
- Grupo de Toxinología y Alternativas Terapeuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellin 050010, Colombia
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellin 050012, Colombia
| | | | - Lina Maria Preciado
- Grupo de Toxinología y Alternativas Terapeuticas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellin 050010, Colombia
- Tech Life Saving (TLS), Tech Innovation Group Company, Medellin 050022, Colombia
| |
Collapse
|
6
|
Solano-Godoy JA, González-Gómez JC, Torres-Bonilla KA, Floriano RS, Miguel ATSF, Murillo-Arango W. Comparison of biological activities of Tityus pachyurus venom from two Colombian regions. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210005. [PMID: 34925479 PMCID: PMC8651215 DOI: 10.1590/1678-9199-jvatitd-2021-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background In the present study, we have tested whether specimens of the medically relevant scorpion Tityus pachyurus, collected from two climatically and ecologically different regions, differ in the biological activities of the venom. Methods Scorpions were collected in Tolima and Huila, Colombia. Chemical profiles of the crude venom were obtained from 80 scorpions for each region, using SDS-PAGE and RP-HPLC. Assays for phospholipase A2, direct and indirect hemolytic, proteolytic, neuromuscular, antibacterial, and insecticidal activities were carried out. Results The electrophoretic profiles of venom from the two regions showed similar bands of 6-14 kDa, 36-45 kDa, 65 kDa and 97 kDa. However, bands between 36 kDa and 65 kDa were observed with more intensity in venoms from Tolima, and a 95 kDa band occurred only in venoms from Huila. The chromatographic profile of the venoms showed differences in the intensity of some peaks, which could be associated with changes in the abundance of some components between both populations. Phospholipase A2 and hemolytic activities were not observable, whereas both venoms showed proteolytic activity towards casein. Insecticidal activity of the venoms from both regions showed significant variation in potency, the bactericidal activity was variable and low for both venoms. Moreover, no differences were observed in the neuromuscular activity assay. Conclusion Our results reveal some variation in the activity of the venom between both populations, which could be explained by the ecological adaptations like differences in feeding, altitude and/or diverse predator exposure. However more in-depth studies are necessary to determine the drivers behind the differences in venom composition and activities.
Collapse
Affiliation(s)
- Jennifer Alexandra Solano-Godoy
- Natural Products Research Group (GIPRONUT), School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Julio César González-Gómez
- Research Group BEA - Biology and Ecology of Arthropods, Corporación Huiltur, Neiva, Huila, Colombia.,School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia.,Research Group on Bio-ecology of Vertebrates (BIVET), Fundación Merenberg, La Plata, Huila, Colombia
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Rafael Stuani Floriano
- Laboratory of Toxinology and Cardiovascular Research (LATEC), Graduate Program in Health Sciences, University of Western São Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | - Ananda T Santa Fé Miguel
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Walter Murillo-Arango
- Natural Products Research Group (GIPRONUT), School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| |
Collapse
|
7
|
Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200173. [PMID: 34290759 PMCID: PMC8277192 DOI: 10.1590/1678-9199-jvatitd-2020-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Background Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinase-like fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families - such as Scorpionidae - and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.
Collapse
Affiliation(s)
- Sebastian Estrada-Gómez
- Toxinology Research Group - Serpentarium, University of Antioquia (UdeA), Medellín, Antioquia, Colombia.,School of Pharmaceutical and Food Sciences, University of Antioquia (UdeA), Medellín, Antioquia, Colombia
| | | | | | - Arie van der Meijden
- Research Center in Biodiversity and Genetic Resources (CIBIO), University of Porto, Vila do Conde, Portugal
| |
Collapse
|
8
|
Carcamo-Noriega EN, Possani LD, Ortiz E. Venom content and toxicity regeneration after venom gland depletion by electrostimulation in the scorpion Centruroides limpidus. Toxicon 2018; 157:87-92. [PMID: 30468759 DOI: 10.1016/j.toxicon.2018.11.305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
The scorpion venom is a cocktail of many components. Its composition can exhibit a level of plasticity in response to different behavioral and environmental factors, leading to intraspecific variation. The toxicity and specificity of scorpion venoms appear to be taxon-dependent, due to a co-evolutionary interaction with prey and predators, which shaped the composition at the molecular level. The venom regeneration by the venom glands is an asynchronous process, in which particular components are expressed at different stages and at different rates. According to this, it can be reasonably assumed that the regeneration of toxicity in the venom is also asynchronous. In this work, we studied the toxicity regeneration dynamics by the scorpion Centruroides limpidus after full venom depletion by electrical stimulation. For this, we evaluated the toxicity of venom samples extracted at different days post depletion, against insects (crickets) and mammals (humans, by assessing the venom activity on the human voltage-dependent Na+ channel Nav1.6). The regeneration of toxicity against humans lagged behind that against crickets (13 vs 10 days, respectively). Thirteen days after depletion the venom seems to be replenished. Our results show asynchrony in the regeneration of species-specific toxic activity in the venom of Centruroides limpidus. The understanding of the venom regeneration kinetics for the different scorpion species will help to design venom extraction protocols that could maximize the yield and quality of the collected venoms.
Collapse
Affiliation(s)
- Edson Norberto Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
9
|
Ward MJ, Ellsworth SA, Hogan MP, Nystrom GS, Martinez P, Budhdeo A, Zelaya R, Perez A, Powell B, He H, Rokyta DR. Female-biased population divergence in the venom of the Hentz striped scorpion (Centruroides hentzi). Toxicon 2018; 152:137-149. [PMID: 30096334 DOI: 10.1016/j.toxicon.2018.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Sex-biased genes are expressed at higher levels in one sex and contribute to phenotypic differences between males and females, as well as overall phenotypic variation within and among populations. Venom has evolved primarily for predation and defense, making venom expression a highly variable phenotype as a result of local adaptation. Several scorpion species have shown both intraspecific and intersexual venom variation, and males have been observed using venom in courtship and mating, suggesting the existence of venom-specific, sex-biased genes that may contribute to population divergence. We used reversed-phase high-performance liquid chromatography (RP-HPLC), Agilent protein bioanalyzer chips, nano-liquid chromatography mass spectrometry (nLC/MS/MS), and median lethal dose (LD50) assays in fruit flies (Drosophila melanogaster) and banded crickets (Gryllodes sigillatus) to investigate proteomic and functional venom variation within and among three Florida populations of the Hentz striped scorpion (Centruroides hentzi). We found significant venom variation among populations, with females, not males, being responsible for this divergence. We also found significant variation in venom expression within populations, with males contributing more to within population variation than females. Our results provide evidence that male and female scorpions experience different natural and sexual selective pressures that have led to the expression of sex-biased venom genes and that these genes may be consequential in population divergence.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Paul Martinez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amisha Budhdeo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Roxana Zelaya
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Alexander Perez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Barclay Powell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics and College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
10
|
Carcamo-Noriega EN, Olamendi-Portugal T, Restano-Cassulini R, Rowe A, Uribe-Romero SJ, Becerril B, Possani LD. Intraspecific variation of Centruroides sculpturatus scorpion venom from two regions of Arizona. Arch Biochem Biophys 2018; 638:52-57. [DOI: 10.1016/j.abb.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
11
|
Updating knowledge on new medically important scorpion species in Mexico. Toxicon 2017; 138:130-137. [DOI: 10.1016/j.toxicon.2017.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
|
12
|
Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates. Toxins (Basel) 2017; 9:toxins9100312. [PMID: 28976932 PMCID: PMC5666359 DOI: 10.3390/toxins9100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
Scorpions use their venom in defensive situations as well as for subduing prey. Since some species of scorpion use their venom more in defensive situations than others, this may have led to selection for differences in effectiveness in defensive situations. Here, we compared the LD50 of the venom of 10 species of scorpions on five different species of target organisms; two insects and three vertebrates. We found little correlation between the target species in the efficacy of the different scorpion venoms. Only the two insects showed a positive correlation, indicating that they responded similarly to the panel of scorpion venoms. We discuss the lack of positive correlation between the vertebrate target species in the light of their evolution and development. When comparing the responses of the target systems to individual scorpion venoms pairwise, we found that closely related scorpion species tend to elicit a similar response pattern across the target species. This was further reflected in a significant phylogenetic signal across the scorpion phylogeny for the LD50 in mice and in zebrafish. We also provide the first mouse LD50 value for Grosphus grandidieri.
Collapse
|
13
|
Estrada-Gómez S, Vargas Muñoz LJ, Saldarriaga-Córdoba M, Quintana Castillo JC. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Trop 2016; 153:70-8. [PMID: 26477848 DOI: 10.1016/j.actatropica.2015.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 11/30/2022]
Abstract
We report the first biochemical, biological, pharmacological and partial proteomic characterization studies of the Opisthancanthus elatus venom (Gervais, 1844) from Colombia. The Reverse Phase High-Performance Liquid Chromatography venom profile showed 28 main well-defined peaks, most eluting between 20 and 45min (18-30% of acetonitrile, respectively). High-resolution mass analysis indicates the presence of 106 components ranging from 806.59742Da to 16849.4139Da. O. elatus venom showed hemolytic activity and hydrolyzed the specific substrate BapNa suggesting the presence of proteins with serine-protease activity. Collected RP-HPLC fractions eluting at 52.6, 55.5, 55.8, 56.2, and 63.9min (PLA2 region between 33 and 40% of acetonitrile), showed hemolytic activity and hydrolyzed the synthetic substrate 4-nitro-3-octanoyloxy-benzoic acid, indicating the presence of compounds with phospholipases A2 activity. These RP-HPLC fractions, showed molecular masses values up to 13978.19546Da, corroborating the possible presence of the mentioned enzymes. Tryptic digestion and MS/MS analysis showed the presence of a phospholipase like fragment, similar to on described in other Opisthacanthus genus studies. No coagulant activity was observed. No larvicidal or antimicrobial activity was observed at concentrations evaluated. Lethal and toxic activity is expected at doses above 100mg/kg, no neurotoxic effects were detected at lower doses. In conclusion, O. elatus exhibits a venom with a predominant phospholipase A2 activity than thought; mammal's neurotoxic activity is expected above the 100mg/kg, which is very high compared to the venom from other neurotoxic scorpions.
Collapse
Affiliation(s)
- Sebastián Estrada-Gómez
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Carrera 53 No. 61-30, Medellín 050010, Colombia; Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Carrera 53 No. 61-30, Medellín 050010, Colombia.
| | - Leidy Johana Vargas Muñoz
- Facultad de Medicina, Universidad Cooperativa de Colombia, Calle 50 A No. 41-20, Medellín 050010, Colombia
| | - Mónica Saldarriaga-Córdoba
- Departamento de Ciencias, Laboratorio de Biología y Bioinformática, Universidad Iberoamericana de Ciencias y Tecnología, Padre Miguel de Olivares No. 1620, Santiago de Chile, Chile
| | | |
Collapse
|
14
|
Estrada-Gomez S, Muñoz LJV, Lanchero P, Latorre CS. Partial Characterization of Venom from the Colombian Spider Phoneutria Boliviensis (Aranae:Ctenidae). Toxins (Basel) 2015; 7:2872-87. [PMID: 26264023 PMCID: PMC4549730 DOI: 10.3390/toxins7082872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
We report on the first studies on the characterization of venom from Phoneutria boliviensis (Aranae:Ctenidae) (F. O. Pickard-Cambridge, 1897), done with Colombian species. After the electrostimulation extraction process, the venom showed physicochemical properties corresponding to a colorless and water-soluble liquid with a density of 0.86 mg/mL and 87% aqueous content. P. boliviensis venom and RP-HPLC fractions showed hemolytic activity and hydrolyzed the synthetic substrate 4-nitro-3-octanoyloxy-benzoic acid, indicating the presence of phospholipases A2 enzymes. The electrophoretic profile showed an important protein content with molecular masses below 14 kDa, and differences between male and female protein content were also revealed. The RP-HPLC venom profile exposes differences between males and female content consistent with the electrophoretic profile. Five fractions collected from the RP-HPLC displayed significant larvicidal activity. Mass analysis indicates the presence of peptides ranging from 1047.71 to 3278.07 Da. Two peptides, Ctenitoxin-Pb48 and Ctenitoxin-Pb53, were partially identified using HPLC-nESI-MS/MS, which showed a high homology with other Ctenitoxins (family Tx3) from Phoneutria nigriventer, Phoneutria keyserlingi and Phoneutria reidyi affecting voltage-gated calcium receptors (Cav 1, 2.1, 2.2 and 2.3) and NMDA-glutamate receptors.
Collapse
Affiliation(s)
- Sebastian Estrada-Gomez
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050010, Colombia.
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050010, Colombia.
| | | | - Paula Lanchero
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050010, Colombia.
| | - Cesar Segura Latorre
- Unidad de espectrometría de masas, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín 050010, Colombia.
| |
Collapse
|