1
|
Turnbull A, Bermejo-Rodríguez C, Preston MA, Garrido-Barros M, Pimentel B, de la Cueva-Méndez G. Targeted Cancer Cell Killing by Highly Selective miRNA-Triggered Activation of a Prokaryotic Toxin-Antitoxin System. ACS Synth Biol 2019; 8:1730-1736. [PMID: 31348648 DOI: 10.1021/acssynbio.9b00172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although not evolved to function in eukaryotes, prokaryotic toxin Kid induces apoptosis in human cells, and this is avoided by coexpression of its neutralizing antitoxin, Kis. Inspired by the way Kid becomes active in bacterial cells we had previously engineered a synthetic toxin-antitoxin system bearing a Kis protein variant that is selectively degraded in cells expressing viral oncoprotein E6, thus achieving highly selective killing of cancer cells transformed by human papillomavirus. Here we aimed to broaden the type of oncogenic insults, and therefore of cancer cells, that can be targeted using this approach. We show that appropriate linkage of the kis gene to a single, fully complementary, target site for an oncogenic human microRNA enables the construction of a synthetic toxin-antitoxin pair that selectively kills cancer cells overexpressing that particular microRNA. Importantly, the resulting system spares nontargeted cells from collateral damage, even when they overexpress highly homologous, though nontargeted, microRNAs.
Collapse
Affiliation(s)
- Alice Turnbull
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | | | - Mark A. Preston
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - María Garrido-Barros
- Synthetic Biology and Smart Therapeutic Nanosystems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology−BIONAND, 29590 Málaga, Spain
- Nanobioengineering of Smart Therapeutic and Diagnostic Systems Laboratory, Area of Oncology and Oncohematology, Instituto de Investigación Biomédica de Málaga−IBIMA, 29010 Málaga, Spain
| | - Belén Pimentel
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
- Synthetic Biology and Smart Therapeutic Nanosystems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology−BIONAND, 29590 Málaga, Spain
- Nanobioengineering of Smart Therapeutic and Diagnostic Systems Laboratory, Area of Oncology and Oncohematology, Instituto de Investigación Biomédica de Málaga−IBIMA, 29010 Málaga, Spain
| | - Guillermo de la Cueva-Méndez
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
- Synthetic Biology and Smart Therapeutic Nanosystems Laboratory, Andalusian Centre for Nanomedicine and Biotechnology−BIONAND, 29590 Málaga, Spain
- Nanobioengineering of Smart Therapeutic and Diagnostic Systems Laboratory, Area of Oncology and Oncohematology, Instituto de Investigación Biomédica de Málaga−IBIMA, 29010 Málaga, Spain
| |
Collapse
|
2
|
Pluta R, Espinosa M. Antisense and yet sensitive: Copy number control of rolling circle-replicating plasmids by small RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1500. [PMID: 30074293 DOI: 10.1002/wrna.1500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Abstract
Bacterial plasmids constitute a wealth of shared DNA amounting to about 20% of the total prokaryotic pangenome. Plasmids replicate autonomously and control their replication by maintaining a fairly constant number of copies within a given host. Plasmids should acquire a good fitness to their hosts so that they do not constitute a genetic load. Here we review some basic concepts in plasmid biology, pertaining to the control of replication and distribution of plasmid copies among daughter cells. A particular class of plasmids is constituted by those that replicate by the rolling circle mode (rolling circle-replicating [RCR]-plasmids). They are small double-stranded DNA molecules, with a rather high number of copies in the original host. RCR-plasmids control their replication by means of a small short-lived antisense RNA, alone or in combination with a plasmid-encoded transcriptional repressor protein. Two plasmid prototypes have been studied in depth, namely the staphylococcal plasmid pT181 and the streptococcal plasmid pMV158, each corresponding to the two types of replication control circuits, respectively. We further discuss possible applications of the plasmid-encoded antisense RNAs and address some future directions that, in our opinion, should be pursued in the study of these small molecules. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Radoslaw Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
3
|
Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the F Plasmid Conjugation Module. EcoSal Plus 2018; 8. [PMID: 30022749 PMCID: PMC11575672 DOI: 10.1128/ecosalplus.esp-0003-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 02/06/2023]
Abstract
The F plasmid or F-factor is a large, 100-kbp, circular conjugative plasmid of Escherichia coli and was originally described as a vector for horizontal gene transfer and gene recombination in the late 1940s. Since then, F and related F-like plasmids have served as role models for bacterial conjugation. At present, more than 200 different F-like plasmids with highly related DNA transfer genes, including those for the assembly of a type IV secretion apparatus, are completely sequenced. They belong to the phylogenetically related MOBF12A group. F-like plasmids are present in enterobacterial hosts isolated from clinical as well as environmental samples all over the world. As conjugative plasmids, F-like plasmids carry genetic modules enabling plasmid replication, stable maintenance, and DNA transfer. In this plasmid backbone of approximately 60 kbp, the DNA transfer genes occupy the largest and mostly conserved part. Subgroups of MOBF12A plasmids can be defined based on the similarity of TraJ, a protein required for DNA transfer gene expression. In addition, F-like plasmids harbor accessory cargo genes, frequently embedded within transposons and/or integrons, which harness their host bacteria with antibiotic resistance and virulence genes, causing increasingly severe problems for the treatment of infectious diseases. Here, I focus on key genetic elements and their encoded proteins present on the F-factor and other typical F-like plasmids belonging to the MOBF12A group of conjugative plasmids.
Collapse
Affiliation(s)
- Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
4
|
Ruiz-Masó JÁ, Luengo LM, Moreno-Córdoba I, Díaz-Orejas R, Del Solar G. Successful Establishment of Plasmids R1 and pMV158 in a New Host Requires the Relief of the Transcriptional Repression of Their Essential rep Genes. Front Microbiol 2017; 8:2367. [PMID: 29250051 PMCID: PMC5717011 DOI: 10.3389/fmicb.2017.02367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Although differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire copG-repB operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of repA. As a consequence of the distinct regulatory pathways implied by CopB and CopG, these repressor proteins play a different role in control of plasmid replication during the steady state: while CopB has an auxiliary role by keeping repressed the regulated promoter whenever the plasmid copy number is above a low threshold, CopG plays a primary role by acting coordinately with RNAII. Here, we have studied the role of the regulatory circuit mediated by these transcriptional repressors during the establishment of these two plasmids in a new host cell, and found that excess Cop repressor molecules in the recipient cell result in a severe decrease in the frequency and/or the velocity of appearance of transformant colonies for the cognate plasmid but not for unrelated plasmids. Using the pMV158 replicon as a model system, together with highly sensitive real-time qPCR and inverse PCR methods, we have also analyzed the effect of CopG on the kinetics of repopulation of the plasmid in Streptococcus pneumoniae. We show that, whereas in the absence of CopG pMV158 repopulation occurs mainly during the first 45 min following plasmid transfer, the presence of the transcriptional repressor in the recipient cell severely impairs the replicon repopulation and makes the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid.
Collapse
Affiliation(s)
- José Á Ruiz-Masó
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Luis M Luengo
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Inmaculada Moreno-Córdoba
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ramón Díaz-Orejas
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gloria Del Solar
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
5
|
Díaz-Orejas R, Espinosa M, Yeo CC. The Importance of the Expendable: Toxin-Antitoxin Genes in Plasmids and Chromosomes. Front Microbiol 2017; 8:1479. [PMID: 28824602 PMCID: PMC5543033 DOI: 10.3389/fmicb.2017.01479] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Toxin–antitoxin (TA) genes were first reported in plasmids and were considered expendable genetic cassettes involved in the stable maintenance of the plasmid replicon by interfering with growth and/or viability of bacteria in which the plasmid was lost. TAs were later found in bacterial chromosomes and also in integrated mobile genetic elements; they were proposed to be involved in the bacterial response to stressful situations. At present, 100s of TAs have been identified and classified in up to six families (I to VI), with those belonging to the type II (constituted by two protein components) being the most studied. Based on well-characterized examples of several type II TAs, we discuss in this review that irrespective of their locations in plasmids or chromosomes, TAs functionally overlap as indicated by: (i) in both locations they can mediate the maintenance of genetic elements to which they are physical linked, and (ii) they can induce persistence or virulence in response to stress situations. Examples of functional confluences in homologous TA systems with different locations are also given. We also consider whether the physiological role of TAs is due to their genetic organization as operons or to their inherent properties, like the short lifespan of the antitoxin component.
Collapse
Affiliation(s)
- Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal AbidinKuala Terengganu, Malaysia
| |
Collapse
|
6
|
Lorenzo-Díaz F, Fernández-López C, Lurz R, Bravo A, Espinosa M. Crosstalk between vertical and horizontal gene transfer: plasmid replication control by a conjugative relaxase. Nucleic Acids Res 2017; 45:7774-7785. [PMID: 28525572 PMCID: PMC5737340 DOI: 10.1093/nar/gkx450] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 01/09/2023] Open
Abstract
Horizontal gene transfer is a key process in the evolution of bacteria and also represents a source of genetic variation in eukaryotes. Among elements participating in gene transfer, thousands of small (<10 kb) mobile bacterial plasmids that replicate by the rolling circle mechanism represent a driving force in the spread of antibiotic resistances. In general, these plasmids are built as genetic modules that encode a replicase, an antibiotic-resistance determinant, and a relaxase that participates in their conjugative mobilization. Further, they control their relatively high copy number (∼30 copies per genome equivalent) by antisense RNAs alone or combined with a repressor protein. We report here that the MobM conjugative relaxase encoded by the promiscuous plasmid pMV158 participates in regulation of the plasmid copy number by transcriptional repression of the antisense RNA, thus increasing the number of plasmid molecules ready to be horizontally transferred (mobilization) and/or vertically inherited (replication). This type of crosstalk between genetic modules involved in vertical and horizontal gene flow has not been reported before.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Conjugation, Genetic
- DNA Copy Number Variations
- DNA Replication
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Drug Resistance, Bacterial/genetics
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Gene Flow
- Gene Transfer, Horizontal
- Microscopy, Electron
- Models, Biological
- Plasmids/genetics
- Promoter Regions, Genetic
- Replicon
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/metabolism
Collapse
Affiliation(s)
- Fabián Lorenzo-Díaz
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna. Av. Astrofísico Francisco Sánchez s/n, 38071 Santa Cruz de Tenerife, Spain
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Cris Fernández-López
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Rudi Lurz
- Max-Plank Institut für molekulare Genetik, Ihnestrasse 63-73, D-14195 Berlin, Germany
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
7
|
Bustamante P, Iredell JR. Carriage of type II toxin-antitoxin systems by the growing group of IncX plasmids. Plasmid 2017; 91:19-27. [PMID: 28267580 DOI: 10.1016/j.plasmid.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The stable maintenance of certain plasmids in bacterial populations has contributed significantly to the current worldwide antibiotic resistance (AbR) emergency. IncX plasmids, long underestimated in this regard, have achieved recent notoriety for their roles in transmission of resistance to carbapenem and colistin, the last-line antibiotics for Gram-negative infections. Toxin-antitoxin (TA) systems contribute to stable maintenance of many AbR plasmids, and a few TA systems have been previously described in the IncX plasmids. Here we present an updated overview of the IncX plasmid family and an in silico analysis of the type II TA systems carried in 153 completely sequenced IncX plasmids that are readily available in public databases at time of writing. The greatest number is in the IncX1 subgroup, followed by IncX3 and IncX4, with only a few representatives of IncX2, IncX5 and IncX6. Toxins from the RelE/ParE superfamily are abundant within IncX1 and IncX4 subgroups, and are associated with a variety of antitoxins. By contrast, the HicBA system is almost exclusively encoded by IncX4 plasmids. Toxins from the superfamily CcdB/MazF were also identified, as were less common systems such as PIN-like and GNAT toxins, and plasmids encoding more than one TA system are probably not unusual. Our results highlight the importance of the IncX plasmid group and update previous much smaller studies, and we present for the first time a detailed analysis of type II TA systems in these plasmids.
Collapse
Affiliation(s)
- Paula Bustamante
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
8
|
Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Front Mol Biosci 2016; 3:66. [PMID: 27800482 PMCID: PMC5065971 DOI: 10.3389/fmolb.2016.00066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50–90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The “activation” of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Section of Microbiology, Department of Medicine, Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Laura Molina-García
- Department of Cell and Developmental Biology, University College London London, UK
| | - Inma Moreno-Córdoba
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Spanish National Research Council Madrid, Spain
| | - Ramón Díaz-Orejas
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| |
Collapse
|
9
|
Loftie-Eaton W, Yano H, Burleigh S, Simmons RS, Hughes JM, Rogers LM, Hunter SS, Settles ML, Forney LJ, Ponciano JM, Top EM. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. Mol Biol Evol 2016; 33:885-97. [PMID: 26668183 PMCID: PMC4840908 DOI: 10.1093/molbev/msv339] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Hirokazu Yano
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | | | | | - Julie M Hughes
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Linda M Rogers
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Matthew L Settles
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Larry J Forney
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | | | - Eva M Top
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| |
Collapse
|