1
|
Murai Y, Hashimoto M. Heteroaromatic Diazirines Are Essential Building Blocks for Material and Medicinal Chemistry. Molecules 2023; 28:molecules28031408. [PMID: 36771073 PMCID: PMC9921084 DOI: 10.3390/molecules28031408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
In materials (polymer) science and medicinal chemistry, heteroaromatic derivatives play the role of the central skeleton in development of novel devices and discovery of new drugs. On the other hand, (3-trifluoromethyl)phenyldiazirine (TPD) is a crucial chemical method for understanding biological processes such as ligand-receptor, nucleic acid-protein, lipid-protein, and protein-protein interactions. In particular, use of TPD has increased in recent materials science to create novel electric and polymer devices with comparative ease and reduced costs. Therefore, a combination of heteroaromatics and (3-trifluoromethyl)diazirine is a promising option for creating better materials and elucidating the unknown mechanisms of action of bioactive heteroaromatic compounds. In this review, a comprehensive synthesis of (3-trifluoromethyl)diazirine-substituted heteroaromatics is described.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
- Correspondence: (Y.M.); (M.H.); Tel.: +81-11-706-9030 (Y.M.); +81-11-706-3849 (M.H.)
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Correspondence: (Y.M.); (M.H.); Tel.: +81-11-706-9030 (Y.M.); +81-11-706-3849 (M.H.)
| |
Collapse
|
2
|
KUCUK C, YURDAKUL S, ÖZDEMIR N, ERDEM B. Crystal structure, vibrational spectroscopy, 1H NMR, and DFT analyses with antibacterial activity studies on silver nitrate complex of 5-iodoindole. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Mahmoud E, Hayallah AM, Kovacic S, Abdelhamid D, Abdel-Aziz M. Recent progress in biologically active indole hybrids: a mini review. Pharmacol Rep 2022; 74:570-582. [PMID: 35594012 DOI: 10.1007/s43440-022-00370-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 01/06/2023]
Abstract
The indole moiety is one of the most widespread heterocycles found in both natural products and biological systems. Indoles have important biological activities including anticancer, antioxidant, anti-inflammatory, antifungal, anticholinesterase, and antibacterial properties. Scientists are therefore interested in the synthesis of biologically active indole-based hybrids such as indole-coumarin, indole-chalcone, indole-isatin, indole-pyrimidine and so on, with the aim of improving activity, selectivity, and mitigating side effects. This review will discuss the newly synthesized indole-based hybrids along with their biological activity which will be useful in drug discovery and development.
Collapse
Affiliation(s)
- Esraa Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New-Assiut, Egypt
| | - Suzana Kovacic
- Department of Chemistry, Simon Fraser University, British Columbia, Canada
| | - Dalia Abdelhamid
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mohamad Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Meade E, Hehir S, Rowan N, Garvey M. Mycotherapy: Potential of Fungal Bioactives for the Treatment of Mental Health Disorders and Morbidities of Chronic Pain. J Fungi (Basel) 2022; 8:jof8030290. [PMID: 35330292 PMCID: PMC8954642 DOI: 10.3390/jof8030290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, and addiction. The anxiolytic, antidepressant and anti-addictive effect of these compounds has raised awareness stimulating neuropharmacological investigations. Micro-dosing or acute dosing with psychedelics including Lysergic acid diethylamide (LSD) and psilocybin may offer patients treatment options which are unmet by current therapeutic options. Studies suggest that either dosing regimen produces a rapid and long-lasting effect on the patient post administration with a good safety profile. Psychedelics can also modulate immune systems including pro-inflammatory cytokines suggesting a potential in the treatment of auto-immune and other chronic pain conditions. This literature review aims to explore recent evidence relating to the application of fungal bioactives in treating chronic mental health and chronic pain morbidities.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
| | - Sarah Hehir
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland;
| | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland; (E.M.); (S.H.)
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, F91 YW50 Sligo, Ireland
- Correspondence: ; Tel.: +353-071-9305529
| |
Collapse
|
5
|
Microwave-Assisted Synthesis of 2-Methyl-1H-indole-3-carboxylate Derivatives via Pd-Catalyzed Heterocyclization. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Indole moiety is well-known as a superlative framework in many natural products and synthetic pharmaceuticals. Herein, we report an efficient procedure to synthesize a series of functionalized 2-methyl-1H-indole-3-carboxylate derivatives from commercially available anilines properly functionalized by different electron-withdrawing and -donating groups through a palladium-catalyzed intramolecular oxidative coupling. The conversion of a variety of enamines into the relevant indole was optimized by exposing the neat mixture of reactants to microwave irradiation, obtaining the desired products in excellent yields and high regioselectivity. The synthesized compounds were confirmed by 1H and 13C spectroscopic means as well as by high-resolution mass spectrometry.
Collapse
|
6
|
Evolution of the Ergot Alkaloid Biosynthetic Gene Cluster Results in Divergent Mycotoxin Profiles in Claviceps purpurea Sclerotia. Toxins (Basel) 2021; 13:toxins13120861. [PMID: 34941699 PMCID: PMC8704706 DOI: 10.3390/toxins13120861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Research into ergot alkaloid production in major cereal cash crops is crucial for furthering our understanding of the potential toxicological impacts of Claviceps purpurea upon Canadian agriculture and to ensure consumer safety. An untargeted metabolomics approach profiling extracts of C. purpurea sclerotia from four different grain crops separated the C. purpurea strains into two distinct metabolomic classes based on ergot alkaloid content. Variances in C. purpurea alkaloid profiles were correlated to genetic differences within the lpsA gene of the ergot alkaloid biosynthetic gene cluster from previously published genomes and from newly sequenced, long-read genome assemblies of Canadian strains. Based on gene cluster composition and unique polymorphisms, we hypothesize that the alkaloid content of C. purpurea sclerotia is currently undergoing adaptation. The patterns of lpsA gene diversity described in this small subset of Canadian strains provides a remarkable framework for understanding accelerated evolution of ergot alkaloid production in Claviceps purpurea.
Collapse
|
7
|
Liu M, Findlay W, Dettman J, Wyka SA, Broders K, Shoukouhi P, Dadej K, Kolařík M, Basnyat A, Menzies JG. Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model. Toxins (Basel) 2021; 13:toxins13110799. [PMID: 34822583 PMCID: PMC8625505 DOI: 10.3390/toxins13110799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, itd/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.
Collapse
Affiliation(s)
- Miao Liu
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
- Correspondence: ; Tel.: +1-613-759-1385
| | - Wendy Findlay
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Jeremy Dettman
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Stephen A. Wyka
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA;
| | - Parivash Shoukouhi
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Kasia Dadej
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Miroslav Kolařík
- Institute of Microbiology of the Czech Academy of Sciences CAS, 14220 Prague, Czech Republic;
| | - Arpeace Basnyat
- Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (W.F.); (J.D.); (P.S.); (K.D.); (A.B.)
| | - Jim G. Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| |
Collapse
|
8
|
Uhlig S, Rangel-Huerta OD, Divon HH, Rolén E, Pauchon K, Sumarah MW, Vrålstad T, Renaud JB. Unraveling the Ergot Alkaloid and Indole Diterpenoid Metabolome in the Claviceps purpurea Species Complex Using LC-HRMS/MS Diagnostic Fragmentation Filtering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7137-7148. [PMID: 34148344 DOI: 10.1021/acs.jafc.1c01973] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plant parasitic fungus Claviceps purpurea sensu lato produces sclerotia containing toxic ergot alkaloids and uncharacterized indole diterpenoids in grasses including cereals. The aim of this study was to detect as many peptide ergot alkaloids and indole diterpenoids in ergot sclerotia as possible by using a liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) approach and applying filtering of diagnostic fragment ions for data extraction. The sample set consisted of 66 Claviceps sclerotia from four different geographic locations in southeastern Norway as well as Saskatchewan, Canada. The host plants included both wild grasses and important cereal grains such as rye. DNA sequencing showed that the sclerotia were from three Claviceps species, i.e., Claviceps purpurea sensu stricto (s.s.), Claviceps humidiphila, and Claviceps arundinis (former C. purpurea genotypes G1, G2, and G2a, respectively). All sclerotia from cereal grains were from C. purpurea s.s. Diagnostic fragment filtering was based on detecting specific product ions in MS/MS data sets that are well-conserved across the different ergot alkaloid subgroups and indole diterpenoids of the paspaline/paxilline type. The approach extracted mass spectra from 67 peptide ergot alkaloids (including C-8 epimers and lactam variants) and five indole diterpenoids. In addition, three clavines were detected by using targeted analysis. The sum of the peak areas for ergot alkaloids, which have been assigned as "major" analogues by the European Food Safety Authority (ergometrine, ergosine, ergotamine, α-ergocryptine, ergocornine, ergocristine, and their 8-S epimers), accounted for at least 50% of the extracted total ergot alkaloid metabolome. Univariate and multivariate statistical analyses showed that several of the alkaloids were specific for certain species within the C. purpurea species complex and could be used as chemotaxonomic markers for species assignment.
Collapse
Affiliation(s)
- Silvio Uhlig
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | | | - Hege H Divon
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Elin Rolén
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Kari Pauchon
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Science, Universitetstunet 3, 1430 Ås, Norway
| | - Mark W Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| | - Trude Vrålstad
- Norwegian Veterinary Institute, P.O. Box 64, 1431 Ås, Norway
| | - Justin B Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada
| |
Collapse
|
9
|
Dung JKS, Duringer JM, Kaur N, Scott JC, Frost KE, Walenta DL, Alderman SC, Craig AM, Hamm PB. Molecular and Alkaloid Characterization of Claviceps purpurea Sensu Lato From Grass Seed Production Areas of the U.S. Pacific Northwest. PHYTOPATHOLOGY 2021; 111:831-841. [PMID: 33141647 DOI: 10.1094/phyto-07-20-0289-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ergot, caused by Claviceps purpurea sensu lato, is an economically important seed replacement disease of Kentucky bluegrass (Poa pratensis) and perennial ryegrass (Lolium perenne) seed crops. C. purpurea sensu stricto is considered the primary Claviceps species responsible, but genetic diversity and cryptic species within C. purpurea sensu lato have previously been reported. Fifty-six C. purpurea sensu lato isolates collected from P. pratensis (n = 21) and L. perenne (n = 35) in Oregon and Washington between 2010 and 2014 were characterized via random amplified polymorphic DNA (RAPD), partial internal transcribed spacer (ITS), β-tubulin and elongation factor-1α (EF-1α) sequences, conidial size, and ergot alkaloid chemotype. Based on RAPD analysis, seven isolates from P. pratensis and 33 isolates from L. perenne collected in Oregon corresponded to C. purpurea sensu stricto, and 13 isolates collected from P. pratensis in Washington and Oregon were identified as C. humidiphila. Partial ITS, β-tubulin, and EF-1α sequences identified 10 isolates from P. pratensis as C. humidiphila, and seven isolates from P. pratensis and 33 isolates from L. perenne were identified as C. purpurea sensu stricto. Several isolates generated ambiguous RAPD bands or sequences that prevented identification. Ergot alkaloid chemotype profiling found that ergocornine and its epimer were predominant in sclerotia from P. pratensis, whereas ergotamine and its epimer were most abundant in sclerotia from L. perenne. This study confirms the presence of the C. purpurea sensu lato species complex in the U.S. Pacific Northwest and suggests that more research is needed to characterize and mitigate Claviceps spp. infection of grass seed crops in North America.
Collapse
Affiliation(s)
- Jeremiah K S Dung
- Department of Botany and Plant Pathology, Central Oregon Agricultural Research and Extension Center, Oregon State University, Madras, OR 97741
| | - Jennifer M Duringer
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Navneet Kaur
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838
| | - Jeness C Scott
- Department of Botany and Plant Pathology, Central Oregon Agricultural Research and Extension Center, Oregon State University, Madras, OR 97741
| | - Kenneth E Frost
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838
| | - Darrin L Walenta
- Department of Crop and Soil Science, Oregon State University Extension Service, La Grande, OR 97850
| | - Stephen C Alderman
- USDA-ARS National Forage Seed Production Research Center, Corvallis, OR 97331
| | - A Morrie Craig
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Philip B Hamm
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838
| |
Collapse
|
10
|
Liu M, Overy DP, Cayouette J, Shoukouhi P, Hicks C, Bisson K, Sproule A, Wyka SA, Broders K, Popovic Z, Menzies JG. Four phylogenetic species of ergot from Canada and their characteristics in morphology, alkaloid production, and pathogenicity. Mycologia 2020; 112:974-988. [PMID: 32936061 DOI: 10.1080/00275514.2020.1797372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Four ergot species (Claviceps ripicola, C. quebecensis, C. perihumidiphila, and C. occidentalis) were recognized based on analyses of DNA sequences from multiple loci, including two housekeeping genes, RNA polymerase II second largest subunit (RPB2), and translation elongation factor 1-α (TEF1-α), and a single-copy ergot alkaloid synthesis gene (easE) encoding chanoclavine I synthase oxidoreductase. Morphological features, ergot alkaloid production, and pathogenicity on five common cereal crops of each species were evaluated and presented in taxonomic descriptions. A synoptic key was also provided for identification.
Collapse
Affiliation(s)
- Miao Liu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - David P Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - Jacques Cayouette
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - Parivash Shoukouhi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - Carmen Hicks
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - Kassandra Bisson
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, K1A 0C6, Canada
| | - Stephen A Wyka
- Colorado State University , Fort Collins, Colorado 80523
| | - Kirk Broders
- Colorado State University , Fort Collins, Colorado 80523
| | - Zlatko Popovic
- Morden Research and Development Centre, Agriculture and Agri-Food Canada , 101 Route 100, Morden, Manitoba R6M 1Y5, Canada
| | - Jim G Menzies
- Morden Research and Development Centre, Agriculture and Agri-Food Canada , 101 Route 100, Morden, Manitoba R6M 1Y5, Canada
| |
Collapse
|
11
|
|
12
|
Ergochromes: Heretofore Neglected Side of Ergot Toxicity. Toxins (Basel) 2019; 11:toxins11080439. [PMID: 31349616 PMCID: PMC6722540 DOI: 10.3390/toxins11080439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Ergot, fungal genus Claviceps, are worldwide distributed grass pathogens known for their production of toxic ergot alkaloids (EAs) and the great agricultural impact they have on both cereal crop and farm animal production. EAs are traditionally considered as the only factor responsible for ergot toxicity. Using broad sampling covering 13 ergot species infecting wild or agricultural grasses (including cereals) across Europe, USA, New Zealand, and South Africa we showed that the content of ergochrome pigments were comparable to the content of EAs in sclerotia. While secalonic acids A–C (SAs), the main ergot ergochromes (ECs), are well known toxins, our study is the first to address the question about their contribution to overall ergot toxicity. Based on our and published data, the importance of SAs in acute intoxication seems to be negligible, but the effect of chronic exposure needs to be evaluated. Nevertheless, they have biological activities at doses corresponding to quantities found in natural conditions. Our study highlights the need for a re-evaluation of ergot toxicity mechanisms and further studies of SAs’ impact on livestock production and food safety.
Collapse
|
13
|
Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem 2019; 89:103021. [PMID: 31176854 DOI: 10.1016/j.bioorg.2019.103021] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Indole is a versatile pharmacophore, a privileged scaffold and an outstanding heterocyclic compound with wide ranges of pharmacological activities due to different mechanisms of action. It is an superlative moiety in drug discovery with the sole property of resembling different structures of the protein. Plenty of research has been taking place in recent years to synthesize and explore the various therapeutic prospectives of this moiety. This review summarizes some of the recent effective chemical synthesis (2014-2018) for indole ring. This review also emphasized on the structure-activity relationship (SAR) to reveal the active pharmacophores of various indole analogues accountable for anticancer, anticonvulsant, antimicrobial, antitubercular, antimalarial, antiviral, antidiabetic and other miscellaneous activities which have been investigated in the last five years. The precise features with motives and framework of each research topic is introduced for helping the medicinal chemists to understand the perspective of the context in a better way. This review will definitely offer the platform for researchers to strategically design diverse novel indole derivatives having different promising pharmacological activities with reduced toxicity and side effects.
Collapse
Affiliation(s)
- Archana Kumari
- Rayat-Bahra Institute of Pharmacy, Dist. Hoshiarpur, 146104 Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126 Punjab, India.
| |
Collapse
|
14
|
Shoukouhi P, Hicks C, Menzies JG, Popovic Z, Chen W, Seifert KA, Assabgui R, Liu M. Phylogeny of Canadian ergot fungi and a detection assay by real-time polymerase chain reaction. Mycologia 2019; 111:493-505. [PMID: 30933656 DOI: 10.1080/00275514.2019.1581018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ergot disease of cereals has become increasingly important in agricultural areas of Canada since 1999. Generally, this disease is considered to be caused by Claviceps purpurea, but the taxonomy of Claviceps from these areas has not been well studied. The objectives of this study were (i) to determine the phylogenetic lineages (phylogenetic species) present in agricultural areas of Canada and (ii) to develop a molecular assay that can separate the lineages on crops from other lineages. Genetic diversity of Claviceps collected from agriculture areas in Canada were investigated using multilocus sequence typing. The loci sequenced include nuc rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS), partial fragments of translation elongation factor 1-α (TEF1), RNA polymerase II second largest subunit (RPB2), β-tubulin (tubB), and two ergot alkaloid synthesis genes (easA, easE). Based on individual locus and concatenated alignments, phylogenetic analyses revealed seven lineages within the premolecular concept of C. purpurea, of which five corresponded with undescribed species (G2b and G4-7). Although lineages G2-7 had narrow host ranges, lineage G1 (= C. purpurea s.s.) had a broad host range that overlapped with other lineages. A molecular diagnostic quantitative polymerase chain reaction (qPCR) assay was developed and validated with 185 samples from a wide range of host plants and geographic origins, including 10 phylogenetic species in C. sect. Claviceps, 8 in C. sect. Pusillae, 1 in C. sect. Citrinae, and 1-2 species from Alternaria, Fusarium, and Penicillium. The assay can detect lineage G1 at a concentration of 7.5 pg/μL and distinguish it from other Claviceps species and lineages. This facilitates disease management by detecting the inocula from nonagriculture host plants.
Collapse
Affiliation(s)
- Parivash Shoukouhi
- a Biodiversity (Mycology and Microbiology), Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , Ottawa , K1A 0C6 , Canada
| | - Carmen Hicks
- a Biodiversity (Mycology and Microbiology), Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , Ottawa , K1A 0C6 , Canada
| | - Jim G Menzies
- b Morden Research and Development Centre , Agriculture and Agri-Food Canada , 101 Route 100, Morden , Manitoba R6M 1Y5 , Canada
| | - Zlatko Popovic
- b Morden Research and Development Centre , Agriculture and Agri-Food Canada , 101 Route 100, Morden , Manitoba R6M 1Y5 , Canada
| | - Wen Chen
- a Biodiversity (Mycology and Microbiology), Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , Ottawa , K1A 0C6 , Canada
| | - Keith A Seifert
- a Biodiversity (Mycology and Microbiology), Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , Ottawa , K1A 0C6 , Canada
| | - Rafik Assabgui
- a Biodiversity (Mycology and Microbiology), Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , Ottawa , K1A 0C6 , Canada
| | - Miao Liu
- a Biodiversity (Mycology and Microbiology), Ottawa Research and Development Centre , Agriculture and Agri-Food Canada , Ottawa , K1A 0C6 , Canada
| |
Collapse
|
15
|
Likar M, Grandič M, Strajn BJ, Kos K, Celar FA. Links Between Genetic Groups, Host Specificity, and Ergot-Alkaloid Profiles within Claviceps purpurea (Fr.) Tul. on Slovenian Grasses. PLANT DISEASE 2018; 102:1334-1340. [PMID: 30673578 DOI: 10.1094/pdis-08-17-1179-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the present study, the genetic relationships and ergot-alkaloid production of the fungus Claviceps purpurea on grasses were investigated, to determine any associations between grass host specificity, ergot-alkaloid production, and geographic origin. C. purpurea sclerotia were obtained from wild and cultivated grasses along a 300-km climatic gradient, from sub-Mediterranean to continental climates. Twenty-one infected grass samples provided 39 sclerotia for analysis of the ergot alkaloids ergometrine, ergosine, ergotamine, ergocornine, ergocryptine, and ergocristine, and their "-inine" epimers, using liquid chromatography-tandem mass spectrometry. C. purpurea ribosomal DNA underwent molecular classification to determine any grass host or geographic specificity of ergot-alkaloid composition for the different operational taxonomic units. Molecular analysis of sclerotia ribosomal DNA showed three genetic groups, with some associations with specific grass host taxonomic groups. The ergot-alkaloid composition data were in agreement with the data obtained by molecular methods. The most frequent ergot-alkaloid epimers were ergocristine, and ergosine. The total ergot-alkaloid concentrations in sclerotia varied from 59 to 4,200 mg kg-1, which corresponds to 0.059 to 4.2 mg kg-1 in animal feed (assuming ergot alkaloids at 1,000 mg kg-1 sclerotia). Therefore, grasses can be associated with significant levels of ergot alkaloids. In addition, the ergot-alkaloid compositions of C. purpurea sclerotia can be different for infections with different C. purpurea genetic groups, because these show different ergot-alkaloid compositions.
Collapse
Affiliation(s)
- Matevž Likar
- Department of Biology, Biotechnical Faculty, University of Ljubljana
| | - Marjana Grandič
- Institute of Food Safety, Feed and Environment, Department of Environment, Animal Nutrition, Welfare and Hygiene, Veterinary Faculty, University of Ljubljana
| | - Breda Jakovac Strajn
- Institute of Food Safety, Feed and Environment, Department of Environment, Animal Nutrition, Welfare and Hygiene, Veterinary Faculty, University of Ljubljana
| | - Katarina Kos
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Franci Aco Celar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Píchová K, Pažoutová S, Kostovčík M, Chudíčková M, Stodůlková E, Novák P, Flieger M, van der Linde E, Kolařík M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps). Mol Phylogenet Evol 2018; 123:73-87. [PMID: 29481949 DOI: 10.1016/j.ympev.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/12/2017] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium.
Collapse
Affiliation(s)
- Kamila Píchová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic; Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12801 Prague, Czech Republic
| | - Sylvie Pažoutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Martin Kostovčík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Milada Chudíčková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Eva Stodůlková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Miroslav Flieger
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic
| | - Elna van der Linde
- Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0121, South Africa
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
17
|
Bauer JI, Gross M, Cramer B, Humpf HU, Hamscher G, Usleber E. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:315-322. [PMID: 29237259 DOI: 10.1021/acs.jafc.7b05580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.
Collapse
Affiliation(s)
- Julia I Bauer
- Dairy Sciences, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| | - Madeleine Gross
- Junior Professorship of Veterinary Food Diagnostics, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, Münster 48149, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster , Corrensstrasse 45, Münster 48149, Germany
| | - Gerd Hamscher
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen , Heinrich-Buff-Ring 17-19, Giessen 35392, Germany
| | - Ewald Usleber
- Dairy Sciences, Institute of Veterinary Food Science, Justus Liebig University Giessen , Ludwigstrasse 21, Giessen 35390, Germany
| |
Collapse
|
18
|
Detection of the tremorgenic mycotoxin paxilline and its desoxy analog in ergot of rye and barley: a new class of mycotoxins added to an old problem. Anal Bioanal Chem 2017; 409:5101-5112. [DOI: 10.1007/s00216-017-0455-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/22/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
|
19
|
Abstract
Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.
Collapse
|
20
|
Dopstadt J, Vens-Cappell S, Neubauer L, Tudzynski P, Cramer B, Dreisewerd K, Humpf HU. Localization of ergot alkaloids in sclerotia of Claviceps purpurea by matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Bioanal Chem 2016; 409:1221-1230. [DOI: 10.1007/s00216-016-0047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022]
|
21
|
van der Linde EJ, Pešicová K, Pažoutová S, Stodůlková E, Flieger M, Kolařík M. Ergot species of the Claviceps purpurea group from South Africa. Fungal Biol 2016; 120:917-930. [PMID: 27521625 DOI: 10.1016/j.funbio.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/13/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Results of a survey and study of the Claviceps purpurea group of species in South Africa are being presented and five new species are described. Morphological descriptions are based on the anamorphs and four nuclear genetic loci. Claviceps fimbristylidis sp. nov. on Fimbristylis complanata was discovered wide-spread across five provinces of the country associated with water and represents the fourth Claviceps species recorded from the Cyperaceae. Claviceps monticola sp. nov. is described from Brachypodium flexum growing in mountain forests in Mpumalanga Province, as well as the northern Drakensberg southwards into the Eastern Cape Province. Claviceps pazoutovae sp. nov. is recorded from Stipa dregeana var. dregeana and Ehrharta erecta var. erecta, also associated with these mountain ranges. Claviceps macroura sp. nov. is recorded from Cenchrus macrourus from the Eastern Cape and Claviceps capensis sp. nov. from Ehrharta villosa var. villosa is recorded from the Western Cape Province. Claviceps cyperi, only recorded from South Africa is included in the study. Ergot alkaloid profiles of all species are provided and showed similarity to C. purpurea. Only C. cyperi and in lesser degree C. capensis, C. macroura, and C. pazoutovae produced ergot alkaloids in clinically significant amounts. Several reported species infect invasive grass species, native to South Africa, and thus represent potentially invasive species.
Collapse
Affiliation(s)
- Elna J van der Linde
- Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0121, South Africa.
| | - Kamila Pešicová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic; Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Praha 2, Czech Republic
| | - Sylvie Pažoutová
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Eva Stodůlková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Miroslav Flieger
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic
| | - Miroslav Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Praha 4, Czech Republic.
| |
Collapse
|
22
|
|
23
|
Gilmore BS, Alderman SC, Knaus BJ, Bassil NV, Martin RC, Dombrowski JE, Dung JKS. Simple sequence repeat markers that identify Claviceps species and strains. Fungal Biol Biotechnol 2016; 3:1. [PMID: 28955460 PMCID: PMC5611664 DOI: 10.1186/s40694-016-0019-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Claviceps purpurea is a pathogen that infects most members of Pooideae, a subfamily of Poaceae, and causes ergot, a floral disease in which the ovary is replaced with a sclerotium. When the ergot body is accidently consumed by either man or animal in high enough quantities, there is extreme pain, limb loss and sometimes death. RESULTS This study was initiated to develop simple sequence repeat (SSRs) markers for rapid identification of C. purpurea. SSRs were designed from sequence data stored at the National Center for Biotechnology Information database. The study consisted of 74 ergot isolates, from four different host species, Lolium perenne, Poa pratensis, Bromus inermis, and Secale cereale plus three additional Claviceps species, C. pusilla, C. paspali and C.fusiformis. Samples were collected from six different counties in Oregon and Washington over a 5-year period. Thirty-four SSR markers were selected, which enabled the differentiation of each isolate from one another based solely on their molecular fingerprints. Discriminant analysis of principle components was used to identify four isolate groups, CA Group 1, 2, 3, and 4, for subsequent cluster and molecular variance analyses. CA Group 1 consisting of eight isolates from the host species P. pratensis, was separated on the cluster analysis plot from the remaining three groups and this group was later identified as C. humidiphila. The other three groups were distinct from one another, but closely related. These three groups contained samples from all four of the host species. These SSRs are simple to use, reliable and allowed clear differentiation of C. humidiphila from C. purpurea. Isolates from the three separate species, C. pusilla, C. paspali and C.fusiformis, also amplified with these markers. CONCLUSIONS The SSR markers developed in this study will be helpful in defining the population structure and genetics of Claviceps strains. They will also provide valuable tools for plant breeders needing to identify resistance in crops or for researchers examining fungal movements across environments.
Collapse
Affiliation(s)
- Barbara S. Gilmore
- USDA ARS Forage Seed and Cereal Research, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Stephen C. Alderman
- USDA ARS Forage Seed and Cereal Research, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Brian J. Knaus
- USDA ARS Horticultural Crops Research Unit, 3420 NW Orchard Ave, Corvallis, OR 97331 USA
| | - Nahla V. Bassil
- USDA ARS National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR 97333 USA
| | - Ruth C. Martin
- USDA ARS Forage Seed and Cereal Research, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - James E. Dombrowski
- USDA ARS Forage Seed and Cereal Research, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Jeremiah K. S. Dung
- Oregon State University, Central Oregon Agricultural Research Center, 850 NW Dogwood Lane, Madras, OR 97741 USA
| |
Collapse
|