1
|
Ugya AY, Yan C, Chen H, Wang Q. Unravelling the eco-monitoring potential of phytoplankton towards a sustainable aquatic ecosystem. MARINE POLLUTION BULLETIN 2025; 216:118021. [PMID: 40253974 DOI: 10.1016/j.marpolbul.2025.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Phytoplankton play an integral role in primary production in aquatic ecosystems, thus butressing its function as an important tool for pollution indication and water quality assessment. Their response mechanism towards the changes in nutrient levels and environmental conditions makes them valuable indicators of ecosystem health. The driver of this response is a complex molecular mechanism involving gene expression and metabolic pathways that allow microalgae to adapt and thrive in varying conditions. The current study shows how phytoplankton population and functional trait dynamics can serve as early signs of potential environmental stressors impacting aquatic ecosystems. This study is highly significant because it highlights the role of phytoplankton as sensitive and reliable bioindicators of aquatic ecosystem health. Thus, providing valuable information for monitoring and managing water quality in marine environments. Also, the study will provide a unique insight into understanding the impact of pollution on phytoplankton, which can also help inform conservation efforts to protect vulnerable species and ecosystems. The study linked the bioindicator role of phytoplankton to a complex molecular mechanisms involving alterations in gene expression, activation of stress-related signalling pathways, and shifts in metabolic profiles. These responses are often characterised by the production of reactive oxygen species (ROS), the upregulation of antioxidant defence systems, and modifications in lipid, protein, and pigment synthesis. The progress of the application of phytoplankton for biomonitoring has been hindered by issues such as sensitivity to multiple environmental variables, diversity of phytoplankton species, and complexity of community interactions. This challenge can be averted through the development of advanced monitoring techniques that can accurately detect and quantify toxins in real time.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Chunlei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Song Y, Li R, Song W, Tang Y, Sun S, Mao G. Microcystis spp. and phosphorus in aquatic environments: A comprehensive review on their physiological and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163136. [PMID: 37001662 DOI: 10.1016/j.scitotenv.2023.163136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Cyanobacterial blooms caused by eutrophication have become a major environmental problem in aquatic ecosystems worldwide over the last few decades. Phosphorus is a limiting nutrient that affects the growth of cyanobacteria and plays a role in dynamic changes in algal density and the formation of cyanobacterial blooms. Therefore, identifying the association between phosphorus sources and Microcystis, which is the most representative and harmful cyanobacteria, is essential for building an understanding of the ecological risks of cyanobacterial blooms. However, systematic reviews summarizing the relationships between Microcystis and phosphorus in aquatic environments are rare. Thus, this study provides a comprehensive overview of the physiological and ecological interactions between phosphorus sources and Microcystis in aquatic environments from the following perspectives: (i) the effects of phosphorus source and concentration on Microcystis growth, (ii) the impacts of phosphorus on the environmental behaviors of Microcystis, (iii) mechanisms of phosphorus-related metabolism in Microcystis, and (iv) role of Microcystis in the distribution of phosphorus sources within aquatic environments. In addition, relevant unsolved issues and essential future investigations (e.g., secondary ecological risks) have been highlighted and discussed. This review provides deeper insights into the relationship between phosphorus sources and Microcystis and can serve as a reference for the evaluation, monitoring, and effective control of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Ruikai Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Wenjia Song
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yulu Tang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Shuangyan Sun
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guannan Mao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
He Z, Chen Y, Huo D, Gao J, Xu Y, Yang R, Yang Y, Yu G. Combined methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121250. [PMID: 36813104 DOI: 10.1016/j.envpol.2023.121250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Global water bodies are now at risk from inevitable cyanobacterial blooms and their production of multiple cyanotoxins, in particular cylindrospermopsin (CYN). However, research on the CYN toxicity and its molecular mechanisms is still limited, whilst the responses of aquatic species against CYN are uncovered. By integrating behavioral observations, chemical detections and transcriptome analysis, this study demonstrated that CYN exerted multi-organ toxicity to model species, Daphnia magna. The present study confirmed that CYN could cause protein inhibition by undermining total protein contents, and altered the gene expression related to proteolysis. Meantime, CYN induced oxidative stress by increasing reactive oxygen species (ROS) level, decreasing the glutathione (GSH) concentration, and interfered with protoheme formation process molecularly. Neurotoxicity led by CYN was solidly determined by abnormal swimming patterns, reduced acetylcholinesterase (AChE), and downward expression of muscarinic acetylcholine receptor (CHRM). Importantly, for the first time, this research determined CYN directly interfered with energy metabolism in cladocerans. CYN distinctively reduced filtration and ingestion rate by targeting on heart and thoracic limbs, which declined the energy intake, and could be further displayed by the reduction of motional strength and the trypsin concentration. These phenotypic alterations were supported by transcriptomic profile, including the down-regulation of oxidative phosphorylation and ATP synthesis. Moreover, CYN was speculated to trigger the self-defense responses of D. magna, known as "abandon-ship" by moderating lipid metabolism and distribution. This study, overall, comprehensively demonstrated the CYN toxicity and the responses of D. magna against it, which is of great significance to the advancements of CYN toxicity knowledge.
Collapse
Affiliation(s)
- Zhongshi He
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youxin Chen
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jin Gao
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yewei Xu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rui Yang
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Gongliang Yu
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zheng L, Liu Y, Li R, Yang Y, Jiang Y. Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis) raciborskii: Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1984. [PMID: 36767351 PMCID: PMC9915880 DOI: 10.3390/ijerph20031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Water blooms caused by the invasive cyanobacterium Raphidiopsis raciborskii occur in many reservoirs in the tropical and subtropical regions of China. In recent decades, this species has spread rapidly to temperate regions. Phenotypic plasticity and climate warming are thought to promote the worldwide dispersion of R. raciborskii. However, investigations into the genetic and phenotypic diversities of this species have revealed significant intraspecific heterogeneity. In particular, competition between R. raciborskii and Microcystis aeruginosa was highly strain dependent. Although the concept of an ecotype was proposed to explain the heterogeneity of R. raciborskii strains with different geographic origins, microevolution is more reasonable for understanding the coexistence of different phenotypes and genotypes in the same environment. It has been suggested that intraspecific heterogeneity derived from microevolution is a strong driving force for the expansion of R. raciborskii. Additionally, temperature, nutrient fluctuations, and grazer disturbance are critical environmental factors that affect the population establishment of R. raciborskii in new environments. The present review provides new insights into the ecological mechanisms underlying the invasion of R. raciborskii in Chinese freshwater ecosystems.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yiming Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Lei L, Lei M, Cheng N, Chen Z, Xiao L, Han BP, Lin Q. Nutrient Regulation of Relative Dominance of Cylindrospermopsin-Producing and Non-cylindrospermopsin-Producing Raphidiopsis raciborskii. Front Microbiol 2021; 12:793544. [PMID: 34899674 PMCID: PMC8664406 DOI: 10.3389/fmicb.2021.793544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) can produce cylindrospermopsin (CYN) which is of great concern due to its considerable toxicity to human and animals. Its CYN-producing (toxic) and non-CYN-producing (non-toxic) strains co-exist commonly in natural water bodies, while how their relative dominance is regulated has not been addressed. In this study, we combined field investigation with laboratory experiments to assessed the relationship between toxic and non-toxic R. raciborskii abundances under different nutrient levels. The rpoC1- and cyrJ-based qPCR was applied for quantifying total and toxic R. raciborskii abundances, respectively. The field survey showed that toxic R. raciborskii was detected in 97 of 115 reservoirs where its proportion ranged from 0.3% to 39.7% within the R. raciborskii population. Both total and toxic R. raciborskii abundances increased significantly with trophic level of these reservoirs, consistent with our monoculture and co-culture experiments showing in an increase in R. raciborskii growth with increasing nitrogen (N) or phosphorus (P) concentrations. In the monoculture experiments, growth rates of non-toxic and toxic strains from Australia or China were not significantly different under the same culture conditions. On the other hand, in the co-culture experiments, the toxic strains displayed a significantly faster growth than non-toxic strains under nutrient-replete conditions, resulting in an obvious shift toward the dominance by toxic strains from day 3 to the end of the experiments, regardless of the strain originating from Australia or China. The reverse was found under N- or P-limited conditions. Our results indicated that the toxic strains of R. raciborskii have a competitive advantage relative to the non-toxic strains in a more eutrophic world. In parallel to an increase in dominance, both toxic strains grown in the mixed population significantly increased CYN production under nutrient-replete conditions as compared to nutrient-limited conditions, suggesting that CYN may be of significance for ecological advantage of toxic R. raciborskii. These results highlight the importance of nutrient availability in regulating abundances and strain dominance of two genotypes of R. raciborskii. Our findings demonstrated that elevated nutrients would favor the growth of CYN-producing R. raciborskii and CYN production, leading to more blooms with higher toxicity at global scale.
Collapse
Affiliation(s)
- Lamei Lei
- Department of Ecology, Jinan University, Guangzhou, China
| | - Minting Lei
- Department of Ecology, Jinan University, Guangzhou, China
| | - Nan Cheng
- Department of Ecology, Jinan University, Guangzhou, China
| | - Zhijiang Chen
- Department of Ecology, Jinan University, Guangzhou, China
| | - Lijuan Xiao
- Department of Ecology, Jinan University, Guangzhou, China
| | - Bo-Ping Han
- Department of Ecology, Jinan University, Guangzhou, China
| | - Qiuqi Lin
- Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Huo D, Gan N, Geng R, Cao Q, Song L, Yu G, Li R. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins. HARMFUL ALGAE 2021; 109:102106. [PMID: 34815019 DOI: 10.1016/j.hal.2021.102106] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms, which refer to the massive growth of harmful cyanobacteria, have altered the global freshwater ecosystems during the past decades. China has the largest population in the world, and it is suffering from the harmful effect of water eutrophication and cyanobacterial blooms along with rapid development of the economy and society. Research on cyanobacterial blooms and cyanotoxins in China have been overwhelmingly enhanced and emphasized during the past decades. In the present review, the research on cyanobacterial blooms in China is generally introduced, including the history of cyanobacterial bloom studies, the diversity of the bloom-forming cyanobacteria species (BFCS), and cyanotoxin studies in China. Most studies have focused on Microcystis, its blooms, and microcystins. Newly emerging blooms with the dominance of non-Microcystis BFCS have been gradually expanding to wide regions in China. Understanding the basic features of these non-Microcystis BFCS and their blooms, including their diversity, occurrence, physio-ecology, and harmful metabolites, will provide direction on future studies of cyanobacterial blooms in China.
Collapse
Affiliation(s)
- Da Huo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Nanqin Gan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ruozhen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 400049, PR China
| | - Qi Cao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, PR China.
| |
Collapse
|
7
|
Sarkar A, Rajarathinam R, Venkateshan RB. A comparative assessment of growth, pigment and enhanced lipid production by two toxic freshwater cyanobacteria Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of nitrogen and phosphorous inputs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15923-15933. [PMID: 33247403 DOI: 10.1007/s11356-020-11754-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen and phosphorous are important nutritional regulators for the growth of cyanobacteria, thereby having a significant impact in bloom formation by toxic species. Usage of toxic cyanobacteria for increasing valuable metabolite production by nutrient manipulation is still unexplored. Hence, the current work is aimed to estimate and compare growth, pigment, and increased lipid production coupled with the identification of fatty acids between two toxic strains-Anabaena circinalis FSS 124 and Cylindrospermopsis raciborskii FSS 127 under various combinations of these two nutrients. Low level of nitrogen and phosphorous enhanced lipid content in both strains (˃ 20% and 30% respectively) and C. raciborskii, respectively. Lipid productivity in low phosphorous concentration (P0.5) was achieved significantly high in C. raciborskii. Similarly, a substantial amount of carotenoids was obtained at reduced nitrogen and phosphorous in C. raciborskii accompanied by lessened growth and Chl a concentration. Unlikely, enough biomass (˃ 2 g L-1) was produced at high nutrient levels in both species. Comparative statistical significance (p < 0.05) was found between two species regarding biomass production, chlorophyll concentration, lipid content, and productivity and between these factors in each species under both nutrient variations. FAME of Cylindrospermopsis is composed of saturated fatty acids (˃ 50%) and MUFA (˃ 25%) while Anabaena contains PUFA (˃ 21%) additionally. However, the study highlights C. raciborskii as potential lipid and carotenoid producer at nutrient stress and finds a novel way to utilize these cyanobacterial biomasses, which cause immense environmental hazards and life threats.
Collapse
Affiliation(s)
- Aratrika Sarkar
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India
| | - Ravikumar Rajarathinam
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India.
| | - Ranganathan Budhi Venkateshan
- Bioenergy Research Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, affiliated to Anna University, Chennai, TN, India
| |
Collapse
|
8
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
9
|
Jia N, Wang Y, Guan Y, Chen Y, Li R, Yu G. Occurrence of Raphidiopsis raciborskii blooms in cool waters: Synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116070. [PMID: 33223338 DOI: 10.1016/j.envpol.2020.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium. To date, this species has successfully invaded many regions from the tropics to sub-tropical and temperate regions, typically forming blooms at temperatures greater than 25 °C. However, there have been a few cases in which R. raciborskii blooms have occurred at low temperatures (below 15 °C), but its cause and mechanisms remain unclear. In this study, field investigations revealed that R. raciborskii blooms occurred at 10-15 °C in Lake Xihu, Yunnan, China. The biomass of R. raciborskii was found to be positively related to nitrate concentrations in this lake. Three strains of R. raciborskii, two isolated from Lake Xihu (CHAB 6611 and CHAB 6612) and one from Lushui Reservoir in central China (CHAB 3409), were used for growth experiments at 15 °C. The three strains exhibited genotypic (16S rRNA and ITS-L genes) and physiological differences in response to nitrogen concentrations at low temperature. The growth rates of strains CHAB 6611 and CHAB 6612 increased with nitrogen concentration while CHAB 3409 could not grow at 15 °C. Furthermore, the growth and phenotypic responses of CHAB 6611 and CHAB 6612 to nitrogen concentrations were different, despite the closer genetic relationship shared by these two strains. Thus, increased nitrogen concentration in water may enhance the biological availability and utilization of nitrogen by R. raciborskii, which is the external promoter, leading to improving the resistance of R. raciborskii to low temperature. The internal cause is the presence of ecotypes in R. raciborskii populations with adaptation to low temperature. With increasing global eutrophication, the distribution range of R. raciborskii as well as the scale of its blooms will increase. As such, the risk of exposure of aquatic biota and humans to cylindrospermopsin is also expected to increase.
Collapse
Affiliation(s)
- Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yilang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuying Guan
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325039, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Jia N, Yang Y, Yu G, Wang Y, Qiu P, Li H, Li R. Interspecific competition reveals Raphidiopsis raciborskii as a more successful invader than Microcystis aeruginosa. HARMFUL ALGAE 2020; 97:101858. [PMID: 32732052 DOI: 10.1016/j.hal.2020.101858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
As a successful invasive cyanobacterial species, Raphidiopsis raciborskii is distributed globally and shows a tendency to replace Microcystis aeruginosa in many subtropical and temperate waters, but the ecological traits that contribute to its invasiveness are still unclear. In this study, we found that R. raciborskii occurred in 149 sites in 42 lakes in eastern and central China and coexisted with M. aeruginosa at most sites. Based on field results, a combination of invasion and competition experiments using a biomass gradient to evaluate the invasiveness and competitiveness of R. raciborskii compared with M. aeruginosa was conducted. In invasive groups, both R. raciborskii and M. aeruginosa were shown to have positive specific growth rates, indicating that R. raciborskii could coexist with M. aeruginosa. Furthermore, R. raciborskii was shown to grow faster from invasion while M. aeruginosa reduced growth for invasion. In competitive groups, R. raciborskii reached a higher maximum biomass and grew longer than M. aeruginosa. The specific growth rate of R. raciborskii was not inhibited by M. aeruginosa biomass, whereas the growth of M. aeruginosa was inhibited by R. raciborskii biomass. It was shown during the whole experiment that R. raciborskii tended to replace M. aeruginosa to become dominant owing to its faster growth rate and the eventual decline in growth of M. aeruginosa. With an increase in biomass of M. aeruginosa, the vegetative cell size and filament length of R. raciborskii gradually increased. This study has demonstrated that the inherent invasive traits of R. raciborskii, size differences, niche differences, and relative fitness differences between R. raciborskii and M. aeruginosa are crucial reasons for the invasive success of R. raciborskii. Our results revealed the invasiveness and domination of R. raciborskii from a new perspective.
Collapse
Affiliation(s)
- Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan 430072, China
| | - Yilang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Pengfei Qiu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hua Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan 430072, China.
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road 7, Wuhan 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325039, China.
| |
Collapse
|
11
|
Zuo Z, Yang Y, Xu Q, Yang W, Zhao J, Zhou L. Effects of phosphorus sources on volatile organic compound emissions from Microcystis flos-aquae and their toxic effects on Chlamydomonas reinhardtii. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1283-1298. [PMID: 29264818 DOI: 10.1007/s10653-017-0055-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
There is diverse phosphorus (P) in eutrophicated waters, but it is considered as a crucial nutrient for cyanobacteria growth due to its easy precipitation as insoluble salts. To uncover the effects of complex P nutrients on the emission of volatile organic compounds (VOCs) from cyanobacteria and their toxic effects on other algae, the VOCs from Microcystis flos-aquae supplied with different types and amount of P nutrients were analyzed, and the effects of VOCs and their two main compounds on Chlamydomonas reinhardtii growth were investigated. When M. flos-aquae cells were supplied with K2HPO4, sodium pyrophosphate and sodium hexametaphosphate as the sole P source, 27, 23 and 29 compounds were found, respectively, including furans, sulfocompounds, terpenoids, benzenes, aldehydes, hydrocarbons and esters. With K2HPO4 as the sole P source, the VOC emission increased with reducing P amount, and the maximum emission was found under Non-P condition. In the treatments of M. flos-aquae VOCs under Non-P condition and two main terpenoids (eucalyptol and limonene) in the VOCs, remarkable decreases were found in C. reinhardtii cell growth, photosynthetic pigment content and photosynthetic abilities. Therefore, we deduce that multiple P nutrients in eutrophicated waters induce different VOC emissions from cyanobacteria, and P amount reduction caused by natural precipitation and algal massive growth results in more VOC emissions. These VOCs play toxic roles in cyanobacteria becoming dominant species, and eucalyptol and limonene are two toxic agents.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Youyou Yang
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Qinghuan Xu
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Wangting Yang
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Jingxian Zhao
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Lv Zhou
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| |
Collapse
|
12
|
Yang Y, Chen Y, Cai F, Liu X, Wang Y, Li R. Toxicity-associated changes in the invasive cyanobacterium Cylindrospermopsis raciborskii in response to nitrogen fluctuations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1041-1049. [PMID: 29153475 DOI: 10.1016/j.envpol.2017.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii is of particular concern due to its ability to fix nitrogen (N), sporadic bloom, potential toxicity and apparent invasiveness. However, the toxicity associated behavior and response of toxic C. raciborskii under N fluctuations in water have been poorly investigated. The present study initiated based on the field survey in which Cylindrospermopsis species was found to have a high fitness under nitrate concentrations fluctuating from 0.02 mg L-1 to 2.90 mg L-1 in Chinese freshwater lakes. Examination on the role of short-term N fluctuations was conducted in two C. raciborskii strains which were exposed to a range of N concentrations supplied in two patterns, namely one-time pattern and ten-time pattern in which the equal amount of N was divided into ten-time accretions. The results showed the growth of both strains were not vulnerable to the transient nutrient fluctuations. The toxic strain showed considerable toxicological flexibility with the highest yield of cylindrospermopsin (CYN) obtained in the absence of N and the lowest in full medium. Generally, larger amounts of total CYN were observed at lower N levels, indicating that N deficiency promoted the intracellular accumulation and simultaneously restrained the extracellular release of CYN. Furthermore, CYN production was significantly different in two N supply patterns. The maximum quotas of intracellular and extracellular CYN in one-time pattern were respectively 2.79-3.53 and 3.94-7.20 times higher compared to the ten-time pattern. To our knowledge, our results are the first evidence of toxicity variations of C. raciborskii to the impermanent N fluctuations, shedding new light on its toxicological plasticity.
Collapse
Affiliation(s)
- Yiming Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfang Cai
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yilang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|