1
|
Sobeeh MG, Hassan KA, Silva AG, Bruehl S. Impact of different CRPS phenotypes and diagnostic criteria on quantitative sensory testing outcomes: systematic review and meta-analysis. PAIN MEDICINE (MALDEN, MASS.) 2024; 25:211-225. [PMID: 37930043 DOI: 10.1093/pm/pnad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This review and meta-analysis evaluated the impact of diagnostic criteria and clinical phenotypes on quantitative sensory testing (QST) outcomes in patients with complex regional pain syndrome (CRPS). METHODS Eight databases were searched based on a previously published protocol. Forty studies comparing QST outcomes between CRPS-I vs II, warm vs cold CRPS, upper vs lower limb CRPS, males vs females, or using Budapest vs older IASP criteria were included. RESULTS Studies investigating QST differences between CRPS-I vs II (n = 4), between males vs females (n = 2), and between upper and lower limb CRPS (n = 2) showed no significant differences. Four studies compared QST outcomes in warm vs cold CRPS, showing heat hyperalgesia in warm CRPS, with thermal and mechanical sensory loss in cold CRPS. Although CRPS diagnosed using the Budapest criteria (24 studies) vs 1994 IASP criteria (13 studies) showed similar sensory profiles, there was significant heterogeneity and low quality of evidence in the latter. CONCLUSIONS Based on the findings of this review, classifying CRPS according to presence or absence of nerve lesion into CRPS-I and II, location (upper or lower limb) or according to sex might not be clinically relevant as all appear to have comparable sensory profiles that might suggest similar underlying mechanisms. In contrast, warm vs cold phenotypes exhibited clear differences in their associated QST sensory profiles. To the extent that differences in underlying mechanisms might lead to differential treatment responsiveness, it appears unlikely that CRPS-I vs II, CRPS location, or patient sex would prove useful in guiding clinical management.
Collapse
Affiliation(s)
- Mohamed Gomaa Sobeeh
- Department of Physical Therapy for Musculoskeletal Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
- Department of Physical Therapy for Orthopedic and orthopedic surgery, Faculty of Physical Therapy, Sinai University, Ismailia, Egypt
| | - Karima Abdelaty Hassan
- Department of Physical Therapy for Musculoskeletal Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Anabela G Silva
- CINTESIS.UA@RISE, School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Stephen Bruehl
- Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Pereira AFM, Cavalcante JS, Angstmam DG, Almeida C, Soares GS, Pucca MB, Ferreira Junior RS. Unveiling the Pain Relief Potential: Harnessing Analgesic Peptides from Animal Venoms. Pharmaceutics 2023; 15:2766. [PMID: 38140106 PMCID: PMC10748172 DOI: 10.3390/pharmaceutics15122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
| | - Joeliton S. Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Davi Gomes Angstmam
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
| | - Cayo Almeida
- Center of Mathematics, Computing Sciences and Cognition, Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Gean S. Soares
- Delphina Rinaldi Abdel Azil Hospital and Emergency Room (HPSDRAA), Manaus 69093-415, AM, Brazil;
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14801-320, SP, Brazil;
| | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil;
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil; (J.S.C.); (D.G.A.)
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP, São Paulo State University (UNESP—Univ Estadual Paulista), Botucatu 01419-901, SP, Brazil
| |
Collapse
|
3
|
Bee Venom Acupuncture Effects on Pain and Its Mechanisms: An Updated Review. Toxins (Basel) 2021; 13:toxins13090608. [PMID: 34564611 PMCID: PMC8472865 DOI: 10.3390/toxins13090608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Bee venom (BV) is a complex natural toxin that contains various pharmaceutical compounds. Bee venom acupuncture (BVA), involving a BV injection into a certain acupuncture point, has been utilized to relieve a range of pain conditions. Regardless of whether pain is caused by disease or injury, if not effectively treated, pain can exert a detrimental effect on all aspects of life. In the past decade, many researchers have investigated the anti-nociceptive effects of BVA through clinical use and experimental evaluation. This report reviews the existing knowledge on the analgesic effects of BVA, focusing on musculoskeletal pain, inflammatory pain and neuropathic pain, and its analgesic mechanisms. Although further clinical trials are needed to clinical application of experimental results, this review will contribute to the standardization and generalization of BVA.
Collapse
|
4
|
Chen Q, Kong L, Xu Z, Cao N, Tang X, Gao R, Zhang J, Deng S, Tan C, Zhang M, Wang Y, Zhang L, Ma K, Li L, Si J. The Role of TMEM16A/ERK/NK-1 Signaling in Dorsal Root Ganglia Neurons in the Development of Neuropathic Pain Induced by Spared Nerve Injury (SNI). Mol Neurobiol 2021; 58:5772-5789. [PMID: 34406600 PMCID: PMC8599235 DOI: 10.1007/s12035-021-02520-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that transmembrane protein 16A (TMEM16A) in nociceptive neurons is an important molecular component contributing to peripheral pain transduction. The present study aimed to evaluate the role and mechanism of TMEM16A in chronic nociceptive responses elicited by spared nerve injury (SNI). In this study, SNI was used to induce neuropathic pain. Drugs were administered intrathecally. The expression and cellular localization of TMEM16A, the ERK pathway, and NK-1 in the dorsal root ganglion (DRG) were detected by western blot and immunofluorescence. Behavioral tests were used to evaluate the role of TMEM16A and p-ERK in SNI-induced persistent pain and hypersensitivity. The role of TMEM16A in the hyperexcitability of primary nociceptor neurons was assessed by electrophysiological recording. The results show that TMEM16A, p-ERK, and NK-1 are predominantly expressed in small neurons associated with nociceptive sensation. TMEM16A is colocalized with p-ERK/NK-1 in DRG. TMEM16A, the MEK/ERK pathway, and NK-1 are activated in DRG after SNI. ERK inhibitor or TMEM16A antagonist prevents SNI-induced allodynia. ERK and NK-1 are downstream of TMEM16A activation. Electrophysiological recording showed that CaCC current increases and intrathecal application of T16Ainh-A01, a selective TMEM16A inhibitor, reverses the hyperexcitability of DRG neurons harvested from rats after SNI. We conclude that TMEM16A activation in DRG leads to a positive interaction of the ERK pathway with activation of NK-1 production and is involved in the development of neuropathic pain after SNI. Also, the blockade of TMEM16A or inhibition of the downstream ERK pathway or NK-1 upregulation may prevent the development of neuropathic pain.
Collapse
Affiliation(s)
- Qinyi Chen
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Liangjingyuan Kong
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Zhenzhen Xu
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Cao
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xuechun Tang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ruijuan Gao
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jingrong Zhang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Shiyu Deng
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Chaoyang Tan
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Security, Karamay Army Division, Xinjiang Uygur Autonomous Region, Chinese People's Liberation Army, Karamay, China
| | - Meng Zhang
- Department of Anesthesiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yang Wang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Liang Zhang
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China. .,Department of Physiology, Medical College of Jiaxing University, Jiaxing, China.
| | - Junqiang Si
- Department of Physiology, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, China. .,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China. .,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Cha M, Lee KH, Kwon M, Lee BH. Possible Therapeutic Options for Complex Regional Pain Syndrome. Biomedicines 2021; 9:biomedicines9060596. [PMID: 34074044 PMCID: PMC8225181 DOI: 10.3390/biomedicines9060596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022] Open
Abstract
Complex regional pain syndrome (CRPS) describes an array of painful conditions that are characterized by continuing regional pain. CRPS comprises severe and inappropriate pain in cases of complete recovery after trauma. Research on the pharmacological treatment of CRPS, however, has not been well investigated. In this study, we compared the pain relief effects of different drugs (URB597, pyrrolidine dithiocarbamate, and hydralazine) in a rat model of chronic post-ischemic pain-induced CRPS. After drug injection, CRPS-induced mechanical allodynia was significantly recovered. After three repetitive drug injections, mechanical sensitivity generally improved as hyper-nociception subsided. Reduced Nav1.7 expression at dorsal root ganglions (DRGs) was observed in the drug treatment groups. Neural imaging analysis revealed decreased neural activity for each drug treatment, compared to vehicle. In addition, treatments significantly reduced IL-1β, IL-6, and TNFα expression in DRGs. These results indicated that drugs could reduce the expression of inflammatory factors and alleviate the symptoms of chronic post-ischemic pain-induced CRPS.
Collapse
Affiliation(s)
- Myeounghoon Cha
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Korea
- Correspondence: (M.C.); (B.H.L.); Tel.: +82-2-2228-2729 (M.C.)
| | - Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan 47011, Korea;
| | - Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan 38428, Korea;
| | - Bae Hwan Lee
- Department of Physiology, College of Medicine, Yonsei University, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Korea
- Correspondence: (M.C.); (B.H.L.); Tel.: +82-2-2228-2729 (M.C.)
| |
Collapse
|
6
|
Chang MC, Kwak SG, Park D. The effect of rTMS in the management of pain associated with CRPS. Transl Neurosci 2020; 11:363-370. [PMID: 33335776 PMCID: PMC7711855 DOI: 10.1515/tnsci-2020-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Therapeutic management of pain in patients with complex regional pain syndrome (CRPS) is challenging. Repetitive transcranial magnetic stimulation (rTMS) has analgesic effects on several types of pain. However, its effect on CRPS has not been elucidated clearly. Therefore, we conducted a meta-analysis of the available clinical studies on rTMS treatment in patients with CRPS. MATERIALS AND METHODS A comprehensive literature search was conducted using the PubMed, EMBASE, Cochrane Library, and SCOPUS databases. We included studies published up to February 09, 2020, that fulfilled our inclusion and exclusion criteria. Data regarding measurement of pain using the visual analog scale before and after rTMS treatment were collected to perform the meta-analysis. The meta-analysis was performed using Comprehensive Meta-analysis Version 2. RESULTS A total of three studies (one randomized controlled trial and two prospective observational studies) involving 41 patients were included in this meta-analysis. No significant reduction in pain was observed immediately after one rTMS treatment session or immediately after the entire schedule of rTMS treatment sessions (5 or 10 sessions; P > 0.05). However, pain significantly reduced 1 week after the entire schedule of rTMS sessions (P < 0.001). CONCLUSION rTMS appears to have a functional analgesic effect in patients with CRPS.
Collapse
Affiliation(s)
- Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Donghwi Park
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, 877, Bangeojinsunhwando-ro, Dong-gu, 44033, Ulsan, Republic of Korea
| |
Collapse
|
7
|
Jansen C, Shimoda LMN, Starkus J, Lange I, Rysavy N, Maaetoft-Udsen K, Tobita C, Stokes AJ, Turner H. In vitro exposure to Hymenoptera venom and constituents activates discrete ionotropic pathways in mast cells. Channels (Austin) 2020; 13:264-286. [PMID: 31237176 PMCID: PMC8670737 DOI: 10.1080/19336950.2019.1629225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Calcium entry is central to the functional processes in mast cells and basophils that contribute to the induction and maintenance of inflammatory responses. Mast cells and basophils express an array of calcium channels, which mediate responses to diverse stimuli triggered by small bioactive molecules, physicochemical stimuli and immunological inputs including antigens and direct immune cell interactions. These cells are also highly responsive to certain venoms (such as Hymenoptera envenomations), which cause histamine secretion, cytokine release and an array of pro-inflammatory functional responses. There are gaps in our understanding of the coupling of venom exposure to specific signaling pathways such as activation of calcium channels. In the present study, we performed a current survey of a model mast cell line selected for its pleiotropic responsiveness to multiple pro-inflammatory inputs. As a heterogenous stimulus, Hymenoptera venom activates multiple classes of conductance at the population level but tend to lead to the measurement of only one type of conductance per cell, despite the cell co-expressing multiple channel types. The data show that ICRAC, IARC, and TRPV-like currents are present in the model mast cell populations and respond to venom exposure. We further assessed individual venom components, specifically secretagogues and arachidonic acid, and identified the conductances associated with these stimuli in mast cells. Single-cell calcium assays and immunofluorescence analysis show that there is heterogeneity of channel expression across the cell population, but this heterogeneity does not explain the apparent selectivity for specific channels in response to exposure to venom as a composite stimulus.
Collapse
Affiliation(s)
- C Jansen
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - L M N Shimoda
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - J Starkus
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - I Lange
- b Department of Pharmaceutical Sciences , Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo , Hilo , Hawai'i , USA
| | - N Rysavy
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - K Maaetoft-Udsen
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - C Tobita
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - A J Stokes
- c Department of Cell and Molecular Biology, Laboratory of Experimental Medicine, John A. Burns School of Medicine , University of Hawai'i , Honolulu , Hawai'i , USA
| | - H Turner
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| |
Collapse
|
8
|
Salgado ASI, Stramosk J, Ludtke DD, Kuci ACC, Salm DC, Ceci LA, Petronilho F, Florentino D, Danielski LG, Gassenferth A, Souza LR, Rezin GT, Santos ARS, Mazzardo-Martins L, Reed WR, Martins DF. Manual Therapy Reduces Pain Behavior and Oxidative Stress in a Murine Model of Complex Regional Pain Syndrome Type I. Brain Sci 2019; 9:brainsci9080197. [PMID: 31405150 PMCID: PMC6721404 DOI: 10.3390/brainsci9080197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 01/24/2023] Open
Abstract
Complex regional pain syndrome type I (CRPS-I) is a chronic painful condition. We investigated whether manual therapy (MT), in a chronic post-ischemia pain (CPIP) model, is capable of reducing pain behavior and oxidative stress. Male Swiss mice were subjected to ischemia-reperfusion (IR) to mimic CRPS-I. Animals received ankle joint mobilization 48h after the IR procedure, and response to mechanical stimuli was evaluated. For biochemical analyses, mitochondrial function as well as oxidative stress thiobarbituric acid reactive substances (TBARS), protein carbonyls, antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) levels were determined. IR induced mechanical hyperalgesia which was subsequently reduced by acute MT treatment. The concentrations of oxidative stress parameters were increased following IR with MT treatment preventing these increases in malondialdehyde (MDA) and carbonyls protein. IR diminished the levels of SOD and CAT activity and MT treatment prevented this decrease in CAT but not in SOD activity. IR also diminished mitochondrial complex activity, and MT treatment was ineffective in preventing this decrease. In conclusion, repeated sessions of MT resulted in antihyperalgesic effects mediated, at least partially, through the prevention of an increase of MDA and protein carbonyls levels and an improvement in the antioxidant defense system.
Collapse
Affiliation(s)
- Afonso S I Salgado
- Coordinator of Integrative Physical Therapy Residency-Philadelphia University Center, Londrina 86020-000, Paraná, Brazil
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Juliana Stramosk
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Ana C C Kuci
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Lisandro A Ceci
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão 88704-900, Santa Catarina, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão 88704-900, Santa Catarina, Brazil
| | - Lucineia G Danielski
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão 88704-900, Santa Catarina, Brazil
| | - Aline Gassenferth
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Centre of Biological Sciences, University Federal of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Luana R Souza
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Gislaine T Rezin
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294-1212, USA
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Centre of Biological Sciences, University Federal of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - William R Reed
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294-1212, USA
| | - Daniel F Martins
- Coordinator of Integrative Physical Therapy Residency-Philadelphia University Center, Londrina 86020-000, Paraná, Brazil.
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça 88137-270, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Peigneur S, Tytgat J. Toxins in Drug Discovery and Pharmacology. Toxins (Basel) 2018; 10:toxins10030126. [PMID: 29547537 PMCID: PMC5869414 DOI: 10.3390/toxins10030126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Venoms from marine and terrestrial animals (cone snails, scorpions, spiders, snakes, centipedes, cnidarian, etc.) can be seen as an untapped cocktail of biologically active compounds, being increasingly recognized as a new emerging source of peptide-based therapeutics.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|