1
|
Gashaw Y, Asmare Z, Tigabie M, Sisay A, Getatachew E, Tadesse S, Bitew G, Ashagre A, Misganaw T, Gashaw M, Kassahun W, Dejazimach Z, Jemal A, Gedfie S, Kumie G, Nigatie M, Abebe W, Kidie AA, Abate BB, Reta MA, Gelaw B. Prevalence of colistin-resistant Enterobacteriaceae isolated from clinical samples in Africa: a systematic review and meta-analysis. BMC Infect Dis 2025; 25:437. [PMID: 40158103 PMCID: PMC11955131 DOI: 10.1186/s12879-025-10826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Antimicrobial resistance among Enterobacteriaceae poses a significant global threat, particularly in developing countries. Colistin, a critical last-resort treatment for infections caused by carbapenem-resistant and multidrug-resistant strains, is increasingly facing resistance due to inappropriate use of colistin and the spread of plasmid-mediated resistance genes. Despite the significance of this issue, comprehensive and updated data on colistin resistance in Africa is lacking. Thus, the current study was aimed to determine the pooled prevalence of colistin-resistant Enterobacteriaceae in Africa. METHODS A systematic search was conducted across PubMed, Scopus, ScienceDirect, and Google Scholar to identify relevant studies. Forty-one studies reporting on the prevalence of colistin resistance in Enterobacteriaceae isolates from clinical specimens in Africa were included in the analysis. Stata 17 software was used to calculate the pooled prevalence of colistin resistance, employing a random-effects model to determine the event rate of resistance. Heterogeneity across studies was assessed using the I2 statistic, and publication bias was evaluated using Egger's test. Subgroup analyses were performed to address any identified heterogeneity. RESULTS This systematic review analyzed the colistin resistance profile of 9,636 Enterobacteriaceae isolates. The overall pooled prevalence of colistin resistance was 26.74% (95% CI: 16.68-36.80). Subgroup analysis by country revealed significant variability in resistance rates, ranging from 0.5% in Djibouti to 50.95% in South Africa. Species-specific prevalence of colistin resistance was as follows: K. pneumoniae 28.8% (95% CI: 16.64%-41.05%), E. coli 24.5% (95% CI: 11.68%-37.3%), Proteus spp. 50.0% (95% CI: 6.0%-106.03%), and Enterobacter spp. 1.22% (95% CI: -0.5%-3.03%). Analysis based on AST methods revealed significant differences in colistin resistance rates (p = 0.001). The resistance rates varied between 12.60% for the disk diffusion method and 28.0% for the broth microdilution method. Additionally, a subgroup analysis of clinical specimens showed significant variation (p < 0.001) in colistin resistance. Stool specimen isolates had the highest resistance rate at 42.0%, while blood specimen isolates had a much lower resistance rate of 3.58%. CONCLUSIONS Colistin resistance in Enterobacteriaceae is notably high in Africa, with significant variation across countries. This underscores the urgent need for effective antimicrobial stewardship, improved surveillance, and the development of new antibiotics.
Collapse
Affiliation(s)
- Yalewayker Gashaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia.
| | - Zelalem Asmare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asefa Sisay
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Ermias Getatachew
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Getachew Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Agenagnew Ashagre
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Tadesse Misganaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Muluken Gashaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Woldeteklehaymanot Kassahun
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Zelalem Dejazimach
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Abdu Jemal
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Solomon Gedfie
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Getinet Kumie
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Marye Nigatie
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Wagaw Abebe
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Atitegeb Abera Kidie
- Department of Public Health, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Biruk Beletew Abate
- Department of Nursing, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Melese Abate Reta
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshofaq , Pretoria, 0084, South Africa
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
2
|
Elbehiry A, Marzouk E, Abalkhail A, Abdelsalam MH, Mostafa MEA, Alasiri M, Ibrahem M, Ellethy AT, Almuzaini A, Aljarallah SN, Abu-Okail A, Marzook N, Alhadyan S, Edrees HM. Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods. Front Microbiol 2025; 16:1549044. [PMID: 40071214 PMCID: PMC11893576 DOI: 10.3389/fmicb.2025.1549044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Antimicrobial resistance (AMR) is recognized as one of the foremost global health challenges, complicating the treatment of infectious diseases and contributing to increased morbidity and mortality rates. Traditionally, microbiological culture and susceptibility testing methods, such as disk diffusion and minimum inhibitory concentration (MIC) assays, have been employed to identify AMR bacteria. However, these conventional techniques are often labor intensive and time consuming and lack the requisite sensitivity for the early detection of resistance. Recent advancements in molecular and genomic technologies-such as next-generation sequencing (NGS), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), lateral flow immunoassays (LFIAs), PCR-based diagnostic methods, and CRISPR-based diagnostics-have revolutionized the diagnosis of AMR. These innovative approaches provide increased sensitivity, reduced turnaround times, and the ability to identify genetic resistance mechanisms. This review seeks to examine the advantages and disadvantages of both emerging technologies and traditional methods for detecting AMR, emphasizing the potential benefits and limitations inherent to each. By understanding the strengths and limitations of these technologies, stakeholders, including researchers, healthcare professionals, regulatory agencies, health authorities, financial managers, and patients, can make informed decisions aimed at preventing the emergence and dissemination of antibiotic-resistant strains, thereby ultimately increasing patient safety.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | | | - Mohamed E. A. Mostafa
- Department of Anatomy, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mazen Alasiri
- Department of Pharmacy, Armed Forces Hospital, King Abdul Aziz Naval base in Jubail, Jubail, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Abousree T. Ellethy
- Division of Biochemistry, Department of Basic Oral Sciences and Dental Education, College of Dentistry, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Akram Abu-Okail
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Naif Marzook
- Department of Emergency Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Satam Alhadyan
- Department of Environmental Health Administration, Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Husam M. Edrees
- Department of Physiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Yadav KS, Datkhile K, Pawar S, Patil S. An Overview of the Genetic Mechanisms of Colistin-Resistance in Bacterial Pathogens: An Indian Perspective. Cureus 2025; 17:e78800. [PMID: 40078264 PMCID: PMC11902915 DOI: 10.7759/cureus.78800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Colistin resistance in bacteria is a growing global issue, given its role as a critical last-resort antibiotic, particularly for treating Gram-negative bacterial infections. Pathogens adopt multiple resistance mechanisms, mediated either by plasmids or chromosomal changes. Some of the most frequently observed strategies include the occurrence of plasmid-borne mobile colistin resistance (mcr) genes, enhanced efflux pump activity, mutations in the regulatory systems, and alterations in the lipid A structure. This article provides an overview of the studies investigating the genetic mechanisms underlying colistin resistance in nosocomial Gram-negative bacteria from India. A total of 37 studies were identified through online searches across various databases, including PubMed, ScienceDirect, and Web of Science. These studies were reviewed to examine bacterial species and their mechanisms of colistin resistance. Over 26 (70.27%) studies were focused on Klebsiella pneumoniae. The most commonly reported mechanism of colistin resistance involved mutations in the two-component systems pmrAB and phoPQ. Plasmid-mediated colistin-resistant mcr genes were identified in 22 studies (18.18%). Four studies reported the overexpression of efflux pump genes as a mechanism of colistin resistance. This article provides a comprehensive summary of these studies, emphasizing the presence of diverse resistance mechanisms across various pathogens. It underscores the necessity for future genomic research on a broader range of pathogens to investigate the prevalence of different mechanisms of colistin resistance in the various regions of India.
Collapse
Affiliation(s)
- Kajal S Yadav
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Kailas Datkhile
- Department of Allied Sciences, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satyajeet Pawar
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
4
|
Attalla ET, Khalil AM, Zakaria AS, Evans R, Tolba NS, Mohamed NM. Efficacy of colistin-based combinations against pandrug-resistant whole-genome-sequenced Klebsiella pneumoniae isolated from hospitalized patients in Egypt: an in vitro/vivo comparative study. Gut Pathog 2024; 16:73. [PMID: 39627871 PMCID: PMC11616336 DOI: 10.1186/s13099-024-00667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Colistin resistance significantly constrains available treatment options and results in the emergence of pandrug-resistant (PDR) strains. Treating PDR infections is a major public health issue. A promising solution lies in using colistin-based combinations. Despite the availability of in vitro data evaluating these combinations, the in vivo studies remain limited. RESULTS Thirty colistin-resistant Klebsiella pneumoniae (ColRKp) isolates were collected from hospitalized patients. Colistin resistance was detected using broth microdilution, and antimicrobial susceptibility was tested using the Kirby-Bauer method against 18 antibiotics. Extremely high resistance levels were detected, with 17% of the isolates being PDR. Virulence profiling, assessed using Anthony capsule staining, the string test, and the crystal violet assay, indicated the predominance of non-biofilm formers and non-hypermucoid strains. The isolates were screened for mcr genes using polymerase chain reaction. Whole-genome sequencing (WGS) and bioinformatics analysis were performed to characterize the genomes of PDR isolates. No plasmid-borne mcr genes were detected, and WGS analysis revealed that PDR isolates belonged to the high-risk clones: ST14 (n = 1), ST147 (n = 2), and ST383 (n = 2). They carried genes encoding extended-spectrum β-lactamases and carbapenemases, blaCTX-M-15 and blaNDM-5, on conjugative IncHI1B/IncFIB plasmids, illustrating the convergence of virulence and resistance genes. The most common mechanism of colistin resistance involved alterations in mgrB. Furthermore, deleterious amino acid substitutions were also detected within PhoQ, PmrC, CrrB, ArnB, and ArnT. Seven colistin-containing combinations were compared using the checkerboard experiment. Synergy was observed when combining colistin with tigecycline, doxycycline, levofloxacin, ciprofloxacin, sulfamethoxazole/trimethoprim, imipenem, or meropenem. The efficacy of colistin combined with either doxycycline or levofloxacin was assessed in vitro using a resistance modulation assay, and in vivo, using a murine infection model. In vitro, doxycycline and levofloxacin reversed colistin resistance in 80% and 73.3% of the population, respectively. In vivo, the colistin + doxycycline combination demonstrated superiority over colistin + levofloxacin, rescuing 80% of infected animals, and reducing bacterial bioburden in the liver and kidneys while preserving nearly intact lung histology. CONCLUSIONS This study represents the first comparative in vitro and in vivo investigation of the efficacy of colistin + doxycycline and colistin + levofloxacin combinations in clinical PDR ColRKp isolates characterized at a genomic level.
Collapse
Affiliation(s)
- Eriny T Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal M Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Azza S Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Nesrin S Tolba
- Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Alshehri AA, Irekeola AA. Prevalence of carbapenem-resistant Enterobacterales (CRE) in Saudi Arabia: A systematic review and meta-analysis. Saudi Pharm J 2024; 32:102186. [PMID: 39498344 PMCID: PMC11532984 DOI: 10.1016/j.jsps.2024.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Antimicrobial resistance is a significant public health issue. In addressing the threat of multidrug resistant bacterial infections, carbapenems have been used. The carbapenem-resistant Enterobacterales (CRE) are, however, rapidly expanding worldwide. Since the issue of CRE is also a problem in Saudi Arabia, the current meta-analysis was performed to comprehensively evaluate the resistance rates to the main carbapenem antibiotics and determine the actual prevalence of CRE in the country. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines was followed. Different web databases including PubMed, Scopus, Web of Science, and ScienceDirect were searched for relevant records. Data were extracted, and summary estimates for resistance to carbapenems were calculated using DerSimonian-Laird method of meta-analysis and the random-effects model. From a total of 787 retrieved records, 69 studies were found fully eligible and were included in the final analyses. More than 50 % of all the studies were conducted after 2010, and the most frequently examined members of the Enterobacterales were Escherichia coli and Klebsiella pneumoniae. The pooled prevalence estimate for imipenem resistance was 6.6 % (95 % CI: 4.7-9.2), 9.1 % (95 % CI: 6.7-12.3) for meropenem, and 18.6 % (95 % CI: 11.9-27.9) for ertapenem. High heterogeneity (I2 > 97 %, p < 0.001) was observed for all the estimates. Compared to other regions of the country, there was higher resistance rates in the Al-Qassim and Al-Jouf provinces. Additionally, resistance to ertapenem was as high as 34.2 % in the most recent study period (2021-2024). Proteus spp was the most prevalent CRE (26.2 %). This review highlights an increasing rate of carbapenem resistance among Enterobacterales, emphasizing the need for collaborative efforts to implement strict infection control and prevention measures. Consistent surveillance is indispensable for safeguarding public health, guiding clinical decisions, and strengthening efforts to tackle the challenges of antibiotic resistance.
Collapse
Affiliation(s)
- Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara, Nigeria
| |
Collapse
|
6
|
Markovska R, Stankova P, Popivanov G, Gergova I, Mihova K, Mutafchiyski V, Boyanova L. Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics (Basel) 2024; 13:677. [PMID: 39061359 PMCID: PMC11274196 DOI: 10.3390/antibiotics13070677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid spread of carbapenemase-producing strains has led to increased levels of resistance among Gram-negative bacteria, especially enterobacteria. The current study aimed to collect and genetically characterize the colistin- and carbapenem-resistant isolates, obtained in one of the biggest hospitals (Military Medical Academy) in Sofia, Bulgaria. Clonal relatedness was detected by RAPD and MLST. Carbapenemases, ESBLs, and mgrB were investigated by PCR amplification and sequencing, replicon typing, and 16S rRNA methyltransferases with PCRs. Fourteen colistin- and carbapenem-resistant K. pneumoniae isolates were detected over five months. Six carbapenem-resistant and colistin-susceptible isolates were also included. The current work revealed a complete change in the spectrum of carbapenemases in Bulgaria. blaNDM-5 was the only NDM variant, and it was always combined with blaOXA-232. The coexistence of blaOXA-232 and blaNDM-5 was observed in 10/14 (72%) of colistin- and carbapenem-resistant K. pneumoniae isolates and three colistin-susceptible isolates. All blaNDM-5- and blaOXA-232-positive isolates belonged to the ST6260 (ST101-like) MLST type. They showed great mgrB variability and had a higher mortality rate. In addition, we observed blaOXA-232 ST14 isolates and KPC-2-producing ST101, ST16, and ST258 isolates. The colistin- and carbapenem-resistant isolates were susceptible only to cefiderocol for blaNDM-5- and blaOXA-232-positive isolates and to cefiderocol and ceftazidime/avibactam for blaOXA-232- or blaKPC-2-positive isolates. All blaOXA-232-positive isolates carried rmtB methylase and the colE replicon type. The extremely limited choice of appropriate treatment for patients infected with such isolates and their faster distribution highlight the need for urgent measures to control this situation.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Georgi Popivanov
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (G.P.); (V.M.)
| | - Ivanka Gergova
- Department of Microbiology and Virology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | | | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
7
|
Abusalah MAH, Choudhary P, Bargui H, Ahmed N, Abusalah MAH, Choudhary OP. A prognostic insight of the mRNA vaccine against antibiotic-resistant bacteria. Ann Med Surg (Lond) 2024; 86:3801-3805. [PMID: 38989193 PMCID: PMC11230832 DOI: 10.1097/ms9.0000000000001970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Priyanka Choudhary
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Hichem Bargui
- Faculty of Pharmacy of Monastir, university of Monastir, Tunisia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Manal Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
8
|
Khoshbayan A, Narimisa N, Elahi Z, Bostanghadiri N, Razavi S, Shariati A. Global prevalence of mutation in the mgrB gene among clinical isolates of colistin-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Front Microbiol 2024; 15:1386478. [PMID: 38912352 PMCID: PMC11190090 DOI: 10.3389/fmicb.2024.1386478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Colistin is used as a last resort for managing infections caused by multidrug-resistant bacteria. However, the high emergence of colistin-resistant strains has restricted the clinical use of this antibiotic in the clinical setting. In the present study, we evaluated the global prevalence of the mutation in the mgrB gene, one of the most important mechanisms of colistin resistance in Klebsiella pneumoniae. Methods Several databases, including Scopus, Medline (via PubMed), and Web of Science, were searched (until August 2023) to identify those studies that address the mgrB mutation in clinical isolates of K. pneumoniae. Using Stata software, the pooled prevalence of mgrB mutation and subgroup analyses for the year of publication, country, continent, mgrB mutation types, and detection methods of mgrB mutation were analyzed. Results Out of the 115 studies included in the analysis, the prevalence of mgrB mutations in colistin-resistant K. pneumoniae isolates was estimated at 65% of isolates, and mgrB variations with insertional inactivation had the highest prevalence among the five investigated mutations with 69%. The year subgroup analysis indicated an increase in mutated mgrB from 46% in 2014 to 61% in 2022. Europe had the highest prevalence of mutated mgrB at 73%, while Africa had the lowest at 54%. Conclusion Mutations in the mgrB gene are reported as one of the most common mechanisms of colistin resistance in K. pneumoniae, and the results of the present study showed that 65% of the reported colistin-resistant K. pneumoniae had a mutation in this gene.
Collapse
Affiliation(s)
- Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narjess Bostanghadiri
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine research center, Khomein University of Medical Sciences, Khomein, Iran
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
9
|
Talat A, Khan F, Khan AU. Genome analyses of colistin-resistant high-risk bla NDM-5 producing Klebsiella pneumoniae ST147 and Pseudomonas aeruginosa ST235 and ST357 in clinical settings. BMC Microbiol 2024; 24:174. [PMID: 38769479 PMCID: PMC11103832 DOI: 10.1186/s12866-024-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 μg/mL), while broth microdilution identified 48 (MIC = 32-128 μg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Fatima Khan
- Microbiology Department, JNMC and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Luo Q, Xu L, Wang Y, Fu H, Xiao T, Yu W, Zhou W, Zhang K, Shen J, Ji J, Ying C, Xiao Y. Clinical relevance, mechanisms, and evolution of polymyxin B heteroresistance carbapenem-resistant Klebsiella pneumoniae: A genomic, retrospective cohort study. Clin Microbiol Infect 2024; 30:507-514. [PMID: 38295990 DOI: 10.1016/j.cmi.2024.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES To study the clinical relevance, mechanisms, and evolution of polymyxin B (POLB) heteroresistance (PHR) in carbapenem-resistant Klebsiella pneumoniae (CRKP), potentially leading to a significant rise in POLB full resistant (FR) CRKP. METHODS Total of 544 CRKP isolates from 154 patients treated with POLB were categorized into PHR and POLB non-heteroresistance (NHR) groups. We performed statistical analysis to compare clinical implications and treatment responses. We employed whole-genome sequencing, bioinformatics, and PCR to study the molecular epidemiology, mechanisms behind PHR, and its evolution into FR. RESULTS We observed a considerable proportion (118 of 154, 76.62%) of clinically undetected PHR strains before POLB exposure, with a significant subset of them (33 of 118, 27.97%) evolving into FR after POLB treatment. We investigated the clinical implications, epidemiological characteristics, mechanisms, and evolutionary patterns of PHR strains in the context of POLB treatment. About 92.86% (39 of 42) of patients had PHR isolates before FR, highlighting the clinical importance of PHR. the ST15 exhibited a notably lower PHR rate (1 of 8, 12.5% vs. 117 of 144, 81.25%; p < 0.01). The ST11 PHR strains showing significantly higher rate of mgrB mutations by endogenous insertion sequences in their resistant subpopulation (RS) compared with other STs (78 of 106, 73.58% vs. 4 of 12, 33.33%; p < 0.01). The mgrB insertional inactivation rate was lower in FR isolates than in the RS of PHR isolates (15 of 42, 35.71% vs. 84 of 112, 75%; p < 0.01), whereas the pmrAB mutation rate was higher in FR isolates than in the RS of PHR isolates (8 of 42, 19.05% vs. 2 of 112, 1.79%; p < 0.01). The evolution from PHR to FR was influenced by subpopulation dynamics and genetic adaptability because of hypermutability. DISCUSSION We highlight significant genetic changes as the primary driver of PHR to FR in CRKP, underscoring polymyxin complexity.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linna Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Central Laboratory, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingting Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kanghui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaying Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
11
|
Popivanov G, Markovska R, Gergova I, Konaktchieva M, Cirocchi R, Kjossev K, Mutafchiyski V. An Intra-Hospital Spread of Colistin-Resistant K. pneumoniae Isolates-Epidemiological, Clinical, and Genetic Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:511. [PMID: 38541237 PMCID: PMC10972034 DOI: 10.3390/medicina60030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 11/12/2024]
Abstract
Background and Objective: Klebsiella pneumoniae appears to be a significant problem due to its ability to accumulate antibiotic-resistance genes. After 2013, alarming colistin resistance rates among carbapenem-resistant K. pneumoniae have been reported in the Balkans. The study aims to perform an epidemiological, clinical, and genetic analysis of a local outbreak of COLr CR-Kp. Material and Methods: All carbapenem-resistant and colistin-resistant K. pneumoniae isolates observed among patients in the ICU unit of Military Medical Academy, Sofia, from 1 January to 31 October 2023, were included. The results were analyzed according to the EUCAST criteria. All isolates were screened for blaVIM, blaIMP, blaKPC, blaNDM, and blaOXA-48. Genetic similarity was determined using the Dice coefficient as a similarity measure and the unweighted pair group method with arithmetic mean (UPGMA). mgrB genes and plasmid-mediated colistin resistance determinants (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) were investigated. Results: There was a total of 379 multidrug-resistant K. pneumoniae isolates, 88% of which were carbapenem-resistant. Of these, there were nine (2.7%) colistin-resistant isolates in six patients. A time and space cluster for five patients was found. Epidemiology typing showed that two isolates belonged to clone A (pts. 1, 5) and the rest to clone B (pts. 2-4) with 69% similarity. Clone A isolates were coproducers of blaNDM-like and blaOXA-48-like and had mgrB-mediated colistin resistance (40%). Clone B isolates had only blaOXA-48-like and intact mgrB genes. All isolates were negative for mcr-1, -2, -3, -4, and -5 genes. Conclusions: The study describes a within-hospital spread of two clones of COLr CR-Kp with a 60% mortality rate. Clone A isolates were coproducers of NDM-like and OXA-48-like enzymes and had mgrB-mediated colistin resistance. Clone B isolates had only OXA-48-like enzymes and intact mgrB genes. No plasmid-mediated resistance was found. The extremely high mortality rate and limited treatment options warrant strict measures to prevent outbreaks.
Collapse
Affiliation(s)
- Georgi Popivanov
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (K.K.); (V.M.)
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria;
| | - Ivanka Gergova
- Department of Microbiology and Virology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Marina Konaktchieva
- Department of Gastroenterology and Hepatology, Military Medical Academy, 1606 Sofia, Bulgaria;
| | - Roberto Cirocchi
- Department of Surgical Science, University of Perugia, 06100 Perugia, Italy;
| | - Kirien Kjossev
- Department of Surgery, Military Medical Academy, 1606 Sofia, Bulgaria; (K.K.); (V.M.)
| | | |
Collapse
|
12
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
13
|
Attalla ET, Khalil AM, Zakaria AS, Baker DJ, Mohamed NM. Genomic characterization of colistin-resistant Klebsiella pneumoniae isolated from intensive care unit patients in Egypt. Ann Clin Microbiol Antimicrob 2023; 22:82. [PMID: 37689686 PMCID: PMC10492301 DOI: 10.1186/s12941-023-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Egypt has witnessed elevated incidence rates of multidrug-resistant Klebsiella pneumoniae infections in intensive care units (ICUs). The treatment of these infections is becoming more challenging whilst colistin-carbapenem-resistant K. pneumoniae is upsurging. Due to the insufficiently available data on the genomic features of colistin-resistant K. pneumoniae in Egypt, it was important to fill in the gap and explore the genomic characteristics, as well as the antimicrobial resistance, the virulence determinants, and the molecular mechanisms of colistin resistance in such a lethal pathogen. METHODS Seventeen colistin-resistant clinical K. pneumoniae isolates were collected from ICUs in Alexandria, Egypt in a 6-month period in 2020. Colistin resistance was phenotypically detected by modified rapid polymyxin Nordmann/Poirel and broth microdilution techniques. The isolates susceptibility to 20 antimicrobials was determined using Kirby-Bauer disk diffusion method. Whole genome sequencing and bioinformatic analysis were employed for exploring the virulome, resistome, and the genetic basis of colistin resistance mechanisms. RESULTS Out of the tested K. pneumoniae isolates, 82.35% were extensively drug-resistant and 17.65% were multidrug-resistant. Promising susceptibility levels towards tigecycline (88.24%) and doxycycline (52.94%) were detected. Population structure analysis revealed seven sequence types (ST) and K-types: ST383-K30, ST147-K64, ST17-K25, ST111-K63, ST11-K15, ST14-K2, and ST525-K45. Virulome analysis revealed yersiniabactin, aerobactin, and salmochelin siderophore systems in ˃ 50% of the population. Hypervirulence biomarkers, iucA (52.94%) and rmpA/A2 (5.88%) were detected. Extended-spectrum β-lactamase- and carbapenemase-producers accounted for 94.12% of the population, with blaCTX-M-15, blaNDM-5, and blaOXA-48 reaching 64.71%, 82.35%, and 82.35%, respectively. Chromosomal alterations in mgrB (82.35%) were the most prevailing colistin resistance-associated genetic change followed by deleterious mutations in ArnT (23.53%, L54H and G164S), PmrA (11.76%, G53V and D86E), PmrB (11.76%, T89P and T134P), PmrC (11.76%, S257L), PhoQ (5.88%, L322Q and Q435H), and ArnB (5.88%, G47D) along with the acquisition of mcr-1.1 by a single isolate of ST525. CONCLUSIONS In this study, we present the genotypic colistin resistance mechanisms in K. pneumoniae isolated in Egypt. More effective antibiotic stewardship protocols must be implemented by Egyptian health authorities to restrain this hazard and safeguard the future utility of colistin. This is the first characterization of a complete sequence of mcr-1.1-bearing IncHI2/IncHI2A plasmid recovered from K. pneumoniae clinical isolate belonging to the emerging high-risk clone ST525.
Collapse
Affiliation(s)
- Eriny T. Attalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Amal M. Khalil
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Azza S. Zakaria
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | | | - Nelly M. Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| |
Collapse
|
14
|
Garvey M. Antimicrobial Peptides Demonstrate Activity against Resistant Bacterial Pathogens. Infect Dis Rep 2023; 15:454-469. [PMID: 37623050 PMCID: PMC10454446 DOI: 10.3390/idr15040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The antimicrobial resistance crisis is an ongoing major threat to public health safety. Low- and middle-income countries are particularly susceptible to higher fatality rates and the economic impact of antimicrobial resistance (AMR). As an increasing number of pathogens emerge with multi- and pan-drug resistance to last-resort antibiotics, there is an urgent need to provide alternative antibacterial options to mitigate disease transmission, morbidity, and mortality. As identified by the World Health Organization (WHO), critically important pathogens such as Klebsiella and Pseudomonas species are becoming resistant to last-resort antibiotics including colistin while being frequently isolated from clinical cases of infection. Antimicrobial peptides are potent amino acid sequences produced by many life forms from prokaryotic, fungal, plant, to animal species. These peptides have many advantages, including their multi-hit mode of action, potency, and rapid onset of action with low levels of resistance being evident. These innate defense mechanisms also have an immune-stimulating action among other activities in vivo, thus making them ideal therapeutic options. Large-scale production and formulation issues (pharmacokinetics, pharmacodynamics), high cost, and protease instability hinder their mass production and limit their clinical application. This review outlines the potential of these peptides to act as therapeutic agents in the treatment of multidrug-resistant infections considering the mode of action, resistance, and formulation aspects. Clinically relevant Gram-positive and Gram-negative pathogens are highlighted according to the WHO priority pathogen list.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91YW50 Sligo, Ireland
| |
Collapse
|
15
|
Claudia SS, Carmen SS, Andrés D, Marcela MA, Kerly CA, Bryan BM, John CJ, José GF. Risk factors associated with colistin resistance in carbapenemase-producing Enterobacterales: a multicenter study from a low-income country. Ann Clin Microbiol Antimicrob 2023; 22:64. [PMID: 37533063 PMCID: PMC10398925 DOI: 10.1186/s12941-023-00609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
PURPOSE The aim of this study was to assess the risk factors for colistin-resistant carbapenemase-producing Enterobacterales (CR-CPE), and describe the mortality associated with this organism, in a low-income country. METHODS A descriptive, observational, and prospective multicenter study was carried out in Guayaquil, Ecuador. All patients with carbapenem-resistant Enterobacterales admitted between December 2021 and May 2022 were enrolled. Infection definitions were established according to the Centers for Disease Control and Prevention (CDC) protocols. The presence of carbapenemase-producing Enterobacterales was confirmed with a multiplex PCR for blaKPC, blaNDM, blaOXA-48, blaVIM, and blaIMP genes. MCR-1 production was studied molecularly, and MLST assays were carried out. RESULTS Out of 114 patients enrolled in the study, 32 (28.07%) had at least one positive sample for CR-CPE. Klebsiella pneumoniae ST512-KPC-3 was the most frequent microorganism isolated. Parenteral feeding, β-lactamase inhibitor use, recent hemodialysis, and renal failure were all considered independent risk factors for carrying CR-CPE. A mortality of 41.22% was detected, but we could not find any difference between colistin-resistant and colistin-susceptible CPE. MCR-1 production was not detected in any of the isolates studied. CONCLUSION A significant burden for CR-CPE was found in a South American country that was mainly caused by the high-risk clone K. pneumoniae ST512-KPC-3 and not mediated by mcr-1 production. Its acquisition involved parenteral feeding, β-lactamase inhibitor use, recent hemodialysis, and renal failure as independent risk factors, demonstrating the critical need for infection prevention and stewardship programs to avoid dissemination to other countries in the region.
Collapse
Affiliation(s)
- Soria-Segarra Claudia
- Sosecali. Medical Services, Guayaquil, EC, 090308, Ecuador.
- Faculty of Medical Sciences, Guayaquil University, Guayaquil, Ecuador.
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain.
| | - Soria-Segarra Carmen
- Sosecali. Medical Services, Guayaquil, EC, 090308, Ecuador
- Department of Internal Medicine, School of Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Cevallos-Apolo Kerly
- Hospital de Infectología Dr. José Daniel Rodríguez Maridueña, Guayaquil, Ecuador
| | | | - Chuzan J John
- Department of Microbiology, Hospital Alcívar, Guayaquil, Ecuador
| | - Gutierrez-Fernández José
- Department of Microbiology, Hospital Virgen de las Nieves, Institute for Biosanitary Research-Ibs, Granada, Spain
| |
Collapse
|
16
|
Zahedi Bialvaei A, Eslami P, Ganji L, Dolatyar Dehkharghani A, Asgari F, Koupahi H, Barzegarian Pashacolaei HR, Rahbar M. Prevalence and epidemiological investigation of mgrB-dependent colistin resistance in extensively drug resistant Klebsiella pneumoniae in Iran. Sci Rep 2023; 13:10680. [PMID: 37393362 PMCID: PMC10314893 DOI: 10.1038/s41598-023-37845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Carbapenemases-producing K. pneumoniae are challenging antimicrobial therapy of hospitalised patients, which is further complicated by colistin resistance. The aim of this study was to investigate the molecular epidemiological insights into carbapenemases-producing and colistin-resistant clinical K. pneumoniaeA total of 162 colistin resistant clinical strains of K. pneumoniae were collected during 2017-2019. Antimicrobial susceptibility and the colistin minimum inhibitory concentration were determined. Using PCR assay, the prevalence of resistance-associated genes including blaKPC, blaIMP, blaVIM, blaOXA-48, blaNDM-1 and mcr-1 to -9 was examined. Additionally, a PCR assay was used to examine the mgrB gene in colistin-resistant bacteria. 94.4% of the tested strains were resistant to imipenem and 96.3% were resistant to meropenem. Colistin resistance (MIC > 4 µg/L) was observed in 161 isolates (99.4%) by Colistin Broth Disk Elution method. The KPC enzyme was the most common carbapenemase and was identified in 95 strains (58.6%), followed by the IMP, VIM and OXA-48 detected in 47 (29%), 23 (14.2%) and 12 (7.4%) isolates, respectively. However, no NDM-1 gene was detected. Additionally, none of the studied isolates harbored mcr variants, while mgrB gene was observed in 152 (92.6%) isolates. Colistin resistance of K. pneumoniae isolates may be associated with mgrB gene mutation. To stop the spread of resistant K. pneumoniae, surveillance must be improved, infection prevention protocols must be followed, and antibiotic stewardship must be practised.
Collapse
Affiliation(s)
- Abed Zahedi Bialvaei
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Eslami
- Department of Microbiology, Milad Hospital, Tehran, Iran
| | - Leila Ganji
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran
| | - Alireza Dolatyar Dehkharghani
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran
| | - Farhad Asgari
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran
| | - Hossein Koupahi
- Department of Microbiology, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | | | - Mohammad Rahbar
- Department of Microbiology, Ministry of Health & Medical Education, Iranian Reference Health Laboratories Research Center, Tehran, Iran.
| |
Collapse
|
17
|
Prevalence of Carbapenemase and Extended-Spectrum β-Lactamase Producing Enterobacteriaceae: A Cross-Sectional Study. Antibiotics (Basel) 2023; 12:antibiotics12010148. [PMID: 36671350 PMCID: PMC9854900 DOI: 10.3390/antibiotics12010148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Enterobacteriaceae have been classified as severely drug resistant bacteria by the World Health Organization due to their extensive production and dissemination of carbapenemases (CPs) and extended-spectrum β-lactamases (ESBL). The current study was conducted with the aim to determine the prevalence of CP- and ESBL-producing Enterobacteriaceae, as well as their antibiotic susceptibility profiles. For this, a hospital-based study was conducted which included 384 participants with bacterial infections. The collection and processing of specimens was conducted per standard microbiological protocol. The samples were inoculated on agar media plates to obtain the bacterial growths, and if they were positive for any bacterial growth, the antibiotic susceptibility testing was performed using disk diffusion method to check their antibiotic susceptibility patterns. The double disc diffusion as well as carbapenem inhibition techniques were used to examine the CP enzymes. Multiplex real-time PCR technique was performed to identify three distinct genetic types of CPs that have been identified in the Enterobacteriaceae (KPC, NDM, and OXA-48). A majority of participants (58.3%) in the current study were living in urban areas. A total of 227 (59.1%) patients were hospitalized. Furthermore, 26.04% of the patients were determined to be suffering from infections with Enterobacteriaceae. Escherichia coli was the most prevalent (9.1%) isolate overall, followed by Klebsiella pneumoniae (8.07%), Acinetobacter baumannii (2.6%), Pseudomonas aeruginosa (3.1%), Enterobacter cloacae (1.3%), Proteus spp. (1.3%), and Morganella spp. (0.5%). The studied patients were suffering from urinary tract infections (48.6%), blood stream infections (32.2%), wounds infection (11.9%), and respiratory infections (7.03%), confirmed with bacterial cultures. The resistance against carbapenems was seen in 31.4% of E. coli isolates, 25.8% in K. pneumoniae, 50% in P. aeruginosa, 25% in A. baumannii, and 20% in E. cloacae isolates. Such high rates of CP- and ESBL-producing Enterobacteriaceae are alarming, suggesting high spread in the study area. It is advised to implement better infection prevention and control strategies and conduct further nationwide screening of the carriers of these pathogens. This might help in reducing the burden of highly resistant bugs.
Collapse
|