1
|
McClelland A, Brophy J, King A, Owino M, Wah A, Peck R. Action needed to address molecular HIV surveillance ethical concerns. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2025; 116:265-271. [PMID: 39461927 PMCID: PMC12076990 DOI: 10.17269/s41997-024-00961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
There have been growing ethical concerns about the widespread use of HIV-related molecular epidemiological public health surveillance and research-or what has come to be known as molecular HIV surveillance. The varied concerns of the practice originate due to lack of informed consent, lack of demonstrated benefit for communities, potential for eroded patient care relationships leading to poor health outcomes, and potential implications for information sharing and findings which could increase stigmatization and other negative impacts in contexts where HIV, drug use, sex work, migration, and poverty are criminalized. As people living with HIV, lawyers, clinicians, and social scientists, we are part of the growing movement calling for critical and ethical attention to the practice of molecular HIV surveillance and the public health logic which underwrites the practice. We urge Canadian public health actors and researchers working with molecular surveillance data to heed global guidance and recommendations for culturally informed ethical practices, to engage community members in HIV surveillance programs, and to ensure that people living with HIV are provided appropriate consent processes for uses of secondary data analysis. Furthermore, we urge researchers and Research Ethics Boards to interrogate assumptions of impracticality in seeking subsequent consent to use persons' health information held in data repositories and explore new methods of informed consent.
Collapse
Affiliation(s)
- Alexander McClelland
- Institute of Criminology and Criminal Justice, Carleton University, Ottawa, ON, Canada.
| | - Jason Brophy
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alexandra King
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maureen Owino
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Amy Wah
- HIV & AIDS Legal Clinic Ontario (HALCO), Toronto, ON, Canada
| | - Ryan Peck
- HIV & AIDS Legal Clinic Ontario (HALCO), Toronto, ON, Canada
| |
Collapse
|
2
|
Blenkinsop A, Sofocleous L, Di Lauro F, Kostaki EG, van Sighem A, Bezemer D, van de Laar T, Reiss P, de Bree G, Pantazis N, Ratmann O, on behalf of the HIV Transmission Elimination Amsterdam (H-TEAM) Consortium. Bayesian mixture models for phylogenetic source attribution from consensus sequences and time since infection estimates. Stat Methods Med Res 2025; 34:523-544. [PMID: 39936344 PMCID: PMC11951470 DOI: 10.1177/09622802241309750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In stopping the spread of infectious diseases, pathogen genomic data can be used to reconstruct transmission events and characterize population-level sources of infection. Most approaches for identifying transmission pairs do not account for the time passing since the divergence of pathogen variants in individuals, which is problematic in viruses with high within-host evolutionary rates. This prompted us to consider possible transmission pairs in terms of phylogenetic data and additional estimates of time since infection derived from clinical biomarkers. We develop Bayesian mixture models with an evolutionary clock as a signal component and additional mixed effects or covariate random functions describing the mixing weights to classify potential pairs into likely and unlikely transmission pairs. We demonstrate that although sources cannot be identified at the individual level with certainty, even with the additional data on time elapsed, inferences into the population-level sources of transmission are possible, and more accurate than using only phylogenetic data without time since infection estimates. We apply the proposed approach to estimate age-specific sources of HIV infection in Amsterdam tranamission networks among men who have sex with men between 2010 and 2021. This study demonstrates that infection time estimates provide informative data to characterize transmission sources, and shows how phylogenetic source attribution can then be done with multi-dimensional mixture models.
Collapse
Affiliation(s)
| | | | - Francesco Di Lauro
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Peter Reiss
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Godelieve de Bree
- Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, UK
| | | |
Collapse
|
3
|
Nosik M, Berezhnya E, Bystritskaya E, Kiseleva I, Lobach O, Kireev D, Svitich O. Female Sex Hormones Upregulate the Replication Activity of HIV-1 Sub-Subtype A6 and CRF02_AG but Not HIV-1 Subtype B. Pathogens 2023; 12:880. [PMID: 37513727 PMCID: PMC10383583 DOI: 10.3390/pathogens12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
More than 50% of all people living with HIV worldwide are women. Globally, HIV/AIDS is the leading cause of death among women aged 15 to 44. The safe and effective methods of hormonal contraception are an essential component of preventive medical care in order to reduce maternal and infant mortality. However, there is limited knowledge regarding the effect of hormones on the rate of viral replication in HIV infection, especially non-B subtypes. The goal of the present work was to study in vitro how the female hormones β-estradiol and progesterone affect the replication of the HIV-1 subtypes A6, CRF02_AG, and B. The findings show that high doses of hormones enhanced the replication of HIV-1 sub-subtype A6 by an average of 1.75 times and the recombinant variant CRF02_AG by 1.4 times but did not affect the replication of HIV-1 subtype B. No difference was detected in the expression of CCR5 and CXCR4 co-receptors on the cell surface, either in the presence or absence of hormones. However, one of the reasons for the increased viral replication could be the modulated TLRs secretion, as it was found that high doses of estradiol and progesterone upregulated, to varying degrees, the expression of TLR2 and TLR9 genes in the PBMCs of female donors infected with HIV-1 sub-subtype A6.
Collapse
Affiliation(s)
- Marina Nosik
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Elena Berezhnya
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Irina Kiseleva
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Olga Lobach
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Dmitry Kireev
- Central Research Institute of Epidemiology, 111123 Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Institute of Vaccines and Sera, 105064 Moscow, Russia
| |
Collapse
|
4
|
Brenner BG, Oliveira M, Ibanescu RI, Routy JP, Thomas R. Doravirine responses to HIV-1 viruses bearing mutations to NRTIs and NNRTIs under in vitro selective drug pressure. J Antimicrob Chemother 2023:7193939. [PMID: 37303226 DOI: 10.1093/jac/dkad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVES The NNRTI doravirine has been recently approved for the first-line treatment of HIV-infected patients, eliciting favourable responses against viruses bearing the K103N, Y181C and G190A mutations. This study used in vitro drug selections to elaborate the breadth of doravirine responses against viruses bearing NNRTI and NRTI resistance-associated mutations (RAMs). METHODS WT clinical isolates (n = 6) and viruses harbouring common NRTI and NNRTI RAMs (n = 6) were serially passaged in escalating concentrations of doravirine, doravirine/islatravir, doravirine/lamivudine and rilpivirine over 24 weeks. Genotypic analysis ascertained the appearance and accumulation of NNRTI RAMs. Phenotypic drug susceptibility assays assessed resistance conferred by acquired NNRTI RAMs. RESULTS For WT viruses, doravirine pressure led to the appearance of V108I or V106A/I/M RAMs after 8 weeks, conferring low-level (∼2-fold) resistance. After 24 weeks, the accumulation of three to six secondary RAMs, including F227L, M230L, L234I and/or Y318, resulted in high-level (>100-fold) resistance to doravirine. Notably, viruses with these doravirine RAMs remained susceptible to rilpivirine and efavirenz. This contrasted with rilpivirine where acquisition of E138K, L100I and/or K101E resulted in >50-fold cross-resistance to all NNRTIs. Doravirine selection of viruses bearing common NRTI and NNRTI RAMs showed delayed acquisition of RAMs compared with WT virus. Pairing doravirine with islatravir or lamivudine attenuated the development of NNRTI RAMs. CONCLUSIONS Doravirine showed favourable resistance profiles against viruses harbouring NRTI and NNRTI RAMs. The high barrier to resistance to doravirine coupled with the long intracellular half-life of islatravir may provide the opportunity for long-acting treatment options.
Collapse
Affiliation(s)
- Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Réjean Thomas
- Clinique médicale l'Actuel, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Brenner BG, Ibanescu RI, Osman N, Cuadra-Foy E, Oliveira M, Chaillon A, Stephens D, Hardy I, Routy JP, Thomas R, Baril JG, Leblanc R, Tremblay C, Roger M, The Montreal Primary HIV Infection (PHI) Cohort Study Group. The Role of Phylogenetics in Unravelling Patterns of HIV Transmission towards Epidemic Control: The Quebec Experience (2002-2020). Viruses 2021; 13:1643. [PMID: 34452506 PMCID: PMC8402830 DOI: 10.3390/v13081643] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/23/2023] Open
Abstract
Phylogenetics has been advanced as a structural framework to infer evolving trends in the regional spread of HIV-1 and guide public health interventions. In Quebec, molecular network analyses tracked HIV transmission dynamics from 2002-2020 using MEGA10-Neighbour-joining, HIV-TRACE, and MicrobeTrace methodologies. Phylogenetics revealed three patterns of viral spread among Men having Sex with Men (MSM, n = 5024) and heterosexuals (HET, n = 1345) harbouring subtype B epidemics as well as B and non-B subtype epidemics (n = 1848) introduced through migration. Notably, half of new subtype B infections amongst MSM and HET segregating as solitary transmissions or small cluster networks (2-5 members) declined by 70% from 2006-2020, concomitant to advances in treatment-as-prevention. Nonetheless, subtype B epidemic control amongst MSM was thwarted by the ongoing genesis and expansion of super-spreader large cluster variants leading to micro-epidemics, averaging 49 members/cluster at the end of 2020. The growth of large clusters was related to forward transmission cascades of untreated early-stage infections, younger at-risk populations, more transmissible/replicative-competent strains, and changing demographics. Subtype B and non-B subtype infections introduced through recent migration now surpass the domestic epidemic amongst MSM. Phylodynamics can assist in predicting and responding to active, recurrent, and newly emergent large cluster networks, as well as the cryptic spread of HIV introduced through migration.
Collapse
Affiliation(s)
- Bluma G. Brenner
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Medicine (Surgery, Infectious Disease), McGill University, Montréal, QC H3A 2M7, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
| | - Nathan Osman
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Ernesto Cuadra-Foy
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
- Department of Microbiology and Immunology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Maureen Oliveira
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research, Montréal, QC H3T 1E2, Canada; (R.-I.I.); (N.O.); (E.C.-F.); (M.O.)
| | - Antoine Chaillon
- Department of Medicine, University of California, San Diego, CA 93903, USA;
| | - David Stephens
- Department of Mathematics and Statistics, McGill University, Montréal, QC H3A 0B9, Canada;
| | - Isabelle Hardy
- Département de Microbiologie et d’Immunologie et Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada; (I.H.); (C.T.); (M.R.)
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H3A 3J1, Canada;
| | - Réjean Thomas
- Clinique Médicale l’Actuel, Montréal, QC H2L 4P9, Canada;
| | - Jean-Guy Baril
- Clinique Médicale Urbaine du Quartier Latin, Montréal, QC H2L 4E9, Canada;
| | - Roger Leblanc
- Clinique Médicale OPUS, Montréal, QC H3A 1T1, Canada;
| | - Cecile Tremblay
- Département de Microbiologie et d’Immunologie et Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada; (I.H.); (C.T.); (M.R.)
| | - Michel Roger
- Département de Microbiologie et d’Immunologie et Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC H2X 0C1, Canada; (I.H.); (C.T.); (M.R.)
| | | |
Collapse
|
6
|
Chen Y, Shen Z, Feng Y, Ruan Y, Li J, Tang S, Tang K, Liang S, Pang X, McNeil EB, Xing H, Chongsuvivatwong V, Lin M, Lan G. HIV-1 subtype diversity and transmission strain source among men who have sex with men in Guangxi, China. Sci Rep 2021; 11:8319. [PMID: 33859273 PMCID: PMC8050077 DOI: 10.1038/s41598-021-87745-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
With the rapid increase in HIV prevalence of men who have sex with men (MSM) in recent years and common human migration and travelling across different provinces in China, MSM are now finding it easier to meet each other, which might contribute to local HIV epidemics as well as fueling cross-province transmission. We performed a cross-sectional survey in 2018-2019 to investigate the current HIV subtype diversity and inferred HIV strain transmission origin among MSM in Guangxi province, China based on a phylogenetic analysis. Based on 238 samples, we found that the HIV-1 subtype diversity was more complicated than before, except for three major HIV subtypes/circulating recombinant forms (CRFs): CRF07_BC, CRF01_AE, CRF55_01B, five other subtypes/CRFs (CRF59_01B, B, CRF08_BC, CRF67_01B, CRF68_01B) and five unique recombinant forms (URFs) were detected. In total, 76.8% (169/220) of samples were infected with HIV from local circulating strains, while others originated from other provinces, predominantly Guangdong and Shanghai. The high diversity of HIV recombinants and complicated HIV transmission sources in Guangxi MSM indicates that there has been an active sexual network between HIV positive MSM both within and outside Guangxi without any effective prevention. Inter-province collaboration must be enforced to provide tailored HIV prevention and control services to MSM in China.
Collapse
Affiliation(s)
- Yi Chen
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Zhiyong Shen
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Yi Feng
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, 102206, China
| | - Yuhua Ruan
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, 102206, China
| | - Jianjun Li
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Shuai Tang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Kailing Tang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Shujia Liang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Xianwu Pang
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
| | - Edward B McNeil
- Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Hui Xing
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Chinese Center for Disease Control and Prevention (China CDC), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, 102206, China
| | | | - Mei Lin
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China.
| | - Guanghua Lan
- Institute of HIV/AIDS Prevention and Control, Guangxi Center of Disease Control and Prevention, Nanning, 530028, China.
| |
Collapse
|
7
|
Shanmukhappa SC, Abraham RR, Huilgol P, Godbole R, Anand AK, Prasad R, Shridhar V, Bhrushundi M. What influences adherence among HIV patients presenting with first-line antiretroviral therapy failure (ART failure)? A retrospective, cross-sectional study from a private clinic in Nagpur, India. J Family Med Prim Care 2020; 9:6217-6223. [PMID: 33681067 PMCID: PMC7928081 DOI: 10.4103/jfmpc.jfmpc_1155_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Multiple reports show increasing occurrences of ART failure in India. Despite the fact that a significant volume of outpatient and on-going healthcare occurs in private clinics, there are very few studies on adherence from private clinics in India. Objective: To evaluate the factors influencing adherence to ART in patients with first-line ART failure. Materials and Methods: Data were collected from a convenience sample of 139 individuals diagnosed with clinical, immunological or virologic failure from a private HIV clinic in Nagpur, India. A retrospective cross-sectional study was undertaken and data were statistically analysed. Results: Of the 139 patients, 118 (84.9%) were male and 21 (15.1%) were female. 64 (46%) had received pre-treatment and adherence counselling. 81 (58.3%) were not told about the side effects of ART medications and 65 (46.8%) avoided friends and family. Most common reasons for suboptimal adherence by stopping treatment were high cost, alcoholism, choosing non-allopathic medications and depression. Reasons cited for suboptimal adherence due to missed doses included feeling healthy, depression, forgetfulness and busy schedule. A significant association was found between pre-treatment counselling, adherence counselling and being told the importance of lifelong treatment and decreased occurrence of complete stoppage of treatment. Conclusion: This study brings to light some of the predictors of ART failure. Counselling, having a strong support system as well as early identification and tackling of reasons for suboptimal adherence plays an important role in preventing ART failure.
Collapse
Affiliation(s)
- Sanjana Chetana Shanmukhappa
- Visiting Research Scholar, AFPI National Center for Primary Care Research and Policy, Bangalore, Karnataka, India
| | - Rahul R Abraham
- Visiting Research Scholar, AFPI National Center for Primary Care Research and Policy, Bangalore, Karnataka, India
| | - Poorva Huilgol
- Laboratory Technician, Molecular Solutions Care Health, Bangalore, Karnataka, India
| | - Rekha Godbole
- Chief of Genotyping Services, Molecular Solutions Care Health, Bangalore, Karnataka, India
| | - Ashoojit K Anand
- Clinical Director, PCMH Restore Health Center, Bangalore, Karnataka, India
| | - Ramakrishna Prasad
- Executive Director, PCMH Restore Health Center, Bangalore, Karnataka, India
| | - Varsha Shridhar
- Director and Co-founder, Molecular Solutions Care Health, Bangalore, Karnataka, India
| | - Milind Bhrushundi
- Central Indian Institute of Infectious Diseases and Lata Mangeshkar Hospital, Nagpur, Maharashtra, India
| |
Collapse
|
8
|
Shiino T, Hachiya A, Hattori J, Sugiura W, Yoshimura K. Nation-Wide Viral Sequence Analysis of HIV-1 Subtype B Epidemic in 2003–2012 Revealed a Contribution of Men Who Have Sex With Men to the Transmission Cluster Formation and Growth in Japan. FRONTIERS IN REPRODUCTIVE HEALTH 2020; 2:531212. [PMID: 36304701 PMCID: PMC9580810 DOI: 10.3389/frph.2020.531212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Background: To better understand the epidemiology of human immunodeficiency virus type 1 (HIV-1) subtype B transmission in Japan, phylodynamic analysis of viral pol sequences was conducted on individuals newly diagnosed as HIV-1 seropositive. Methodology: A total of 5,018 patients newly diagnosed with HIV-1 infection and registered in the Japanese Drug Resistance HIV Surveillance Network from 2003 to 2012 were enrolled in the analysis. Using the protease-reverse transcriptase nucleotide sequences, their subtypes were determined, and phylogenetic relationships among subtype B sequences were inferred using three different methods: distance-matrix, maximum likelihood, and Bayesian Markov chain Monte Carlo. Domestically spread transmission clusters (dTCs) were identified based on the following criteria: >95% in interior branch test, >95% in Bayesian posterior probability and <10% in depth-first searches for sub-tree partitions. The association between dTC affiliation and individuals' demographics was analyzed using univariate and multivariate analyses. Results: Among the cases enrolled in the analysis, 4,398 (87.6%) were classified as subtype B. Many of them were Japanese men who had sex with men (MSM), and 3,708 (84.3%) belonged to any of 312 dTCs. Among these dTCs, 243 (77.9%) were small clusters with <10 individuals, and the largest cluster consisted of 256 individuals. Most dTCs had median time of the most recent common ancestor between 1995 and 2005, suggesting that subtype B infection was spread among MSMs in the second half of the 1990s. Interestingly, many dTCs occurred within geographical regions. Comparing with singleton cases, TCs included more MSM, young person, and individuals with high CD4+ T-cell count at the first consultation. Furthermore, dTC size was significantly correlated with gender, age, transmission risks, recent diagnosis and relative population size of the region mainly distributed. Conclusions: Our study clarified that major key population of HIV-1 subtype B epidemic in Japan is local MSM groups. The study suggests that HIV-1 subtype B spread via episodic introductions into the local MSM groups, some of the viruses spread to multiple regions. Many cases in dTC were diagnosed during the early phase of infection, suggesting their awareness to HIV risks.
Collapse
Affiliation(s)
- Teiichiro Shiino
- Surveillance and Information Division, Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Teiichiro Shiino
| | - Atsuko Hachiya
- Division of Biological Information Analysis, Department of Clinical Research Management, Crinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Junko Hattori
- Division of Biological Information Analysis, Department of Clinical Research Management, Crinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Wataru Sugiura
- Division of Biological Information Analysis, Department of Clinical Research Management, Crinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Research Institute Director, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| |
Collapse
|
9
|
Kostaki EG, Gova M, Adamis G, Xylomenos G, Chini M, Mangafas N, Lazanas M, Metallidis S, Tsachouridou O, Papastamopoulos V, Chatzidimitriou D, Kakalou E, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Pilalas D, Papageorgiou I, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Petrakis V, Drimis S, Gogos C, Hatzakis A, Beloukas A, Skoura L, Paraskevis D. A Nationwide Study about the Dispersal Patterns of the Predominant HIV-1 Subtypes A1 and B in Greece: Inference of the Molecular Transmission Clusters. Viruses 2020; 12:E1183. [PMID: 33086773 PMCID: PMC7589601 DOI: 10.3390/v12101183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/22/2023] Open
Abstract
Our aim was to investigate the dispersal patterns and parameters associated with local molecular transmission clusters (MTCs) of subtypes A1 and B in Greece (predominant HIV-1 subtypes). The analysis focused on 1751 (28.4%) and 2575 (41.8%) sequences of subtype A1 and B, respectively. Identification of MTCs was based on phylogenetic analysis. The analyses identified 38 MTCs including 2-1518 subtype A1 sequences and 168 MTCs in the range of 2-218 subtype B sequences. The proportion of sequences within MTCs was 93.8% (1642/1751) and 77.0% (1982/2575) for subtype A1 and B, respectively. Transmissions within MTCs for subtype A1 were associated with risk group (Men having Sex with Men vs. heterosexuals, OR = 5.34, p < 0.001) and Greek origin (Greek vs. non-Greek origin, OR = 6.05, p < 0.001) and for subtype B, they were associated with Greek origin (Greek vs. non-Greek origin, OR = 1.57, p = 0.019), younger age (OR = 0.96, p < 0.001), and more recent sampling (time period: 2011-2015 vs. 1999-2005, OR = 3.83, p < 0.001). Our findings about the patterns of across and within country dispersal as well as the parameters associated with transmission within MTCs provide a framework for the application of the study of molecular clusters for HIV prevention.
Collapse
Affiliation(s)
- Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Georgios Xylomenos
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Pilalas
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Ifigeneia Papageorgiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Vasilis Petrakis
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Charalambos Gogos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Patras, 26504 Rio, Greece;
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Apostolos Beloukas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L697BE, UK
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| |
Collapse
|
10
|
Pimentel V, Pingarilho M, Alves D, Diogo I, Fernandes S, Miranda M, Pineda-Peña AC, Libin P, Martins MRO, Vandamme AM, Camacho R, Gomes P, Abecasis A. Molecular Epidemiology of HIV-1 Infected Migrants Followed up in Portugal: Trends between 2001-2017. Viruses 2020; 12:v12030268. [PMID: 32121161 PMCID: PMC7150888 DOI: 10.3390/v12030268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
Migration is associated with HIV-1 vulnerability. Objectives: To identify long-term trends in HIV-1 molecular epidemiology and antiretroviral drug resistance (ARV) among migrants followed up in Portugal Methods: 5177 patients were included between 2001 and 2017. Rega, Scuel, Comet, and jPHMM algorithms were used for subtyping. Transmitted drug resistance (TDR) and Acquired drug resistance (ADR) were defined as the presence of surveillance drug resistance mutations (SDRMs) and as mutations of the IAS-USA 2015 algorithm, respectively. Statistical analyses were performed. Results: HIV-1 subtypes infecting migrants were consistent with the ones prevailing in their countries of origin. Over time, overall TDR significantly increased and specifically for Non-nucleoside reverse transcriptase inhibitor (NNRTIs) and Nucleoside reverse transcriptase inhibitor (NRTIs). TDR was higher in patients from Mozambique. Country of origin Mozambique and subtype B were independently associated with TDR. Overall, ADR significantly decreased over time and specifically for NRTIs and Protease Inhibitors (PIs). Age, subtype B, and viral load were independently associated with ADR. Conclusions: HIV-1 molecular epidemiology in migrants suggests high levels of connectivity with their country of origin. The increasing levels of TDR in migrants could indicate an increase also in their countries of origin, where more efficient surveillance should occur.
Collapse
Affiliation(s)
- Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Daniela Alves
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Isabel Diogo
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisboa, Portugal; (I.D.); (S.F.); (P.G.)
| | - Sandra Fernandes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisboa, Portugal; (I.D.); (S.F.); (P.G.)
| | - Mafalda Miranda
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Andrea-Clemencia Pineda-Peña
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111321, Colombia
| | - Pieter Libin
- KU Leuven, Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (R.C.)
- Artificial Intelligence lab, Department of computer science, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - M. Rosário O. Martins
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
| | - Anne-Mieke Vandamme
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
- KU Leuven, Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (R.C.)
| | - Ricardo Camacho
- KU Leuven, Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (P.L.); (R.C.)
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisboa, Portugal; (I.D.); (S.F.); (P.G.)
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, 2829-511 Caparica, Portugal
| | - Ana Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa (IHMT/UNL), 1349-008 Lisboa, Portugal; (V.P.); (M.P.); (D.A.); (M.M.); (A.-C.P.-P.); (M.R.O.M.); (A.-M.V.)
- Correspondence:
| |
Collapse
|
11
|
Soulie C, Santoro MM, Storto A, Abdi B, Charpentier C, Armenia D, Jary A, Forbici F, Bertoli A, Gennari W, Andreoni M, Mussini C, Antinori A, Perno CF, Calvez V, Ceccherini-Silberstein F, Descamps D, Marcelin AG. Prevalence of doravirine-associated resistance mutations in HIV-1-infected antiretroviral-experienced patients from two large databases in France and Italy. J Antimicrob Chemother 2020; 75:1026-1030. [DOI: 10.1093/jac/dkz553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
Objectives
Doravirine, a novel NNRTI, selects for specific mutations in vitro, including mutations at reverse transcriptase (RT) positions 106, 108, 188, 227, 230 and 234. The aim of this study was to examine the prevalence of doravirine-associated resistance mutations in HIV-1-infected antiretroviral-experienced patients.
Methods
Doravirine-associated resistance mutations identified in vitro or in vivo were studied in a set of 9199 HIV-1 RT sequences from HIV-1 antiretroviral-experienced patients, including 381 NNRTI-failing patients in France and Italy between 2012 and 2017. The following mutations were considered as resistance mutations: V106A/M, V108I, Y188L, G190S, F227C/L/V, M230I/L, L234I, P236L, K103N + Y181C, K103N + P225H and K103N + L100I.
Results
The frequencies of doravirine-associated resistance mutations (total dataset versus NNRTI-failing patients) were: V106A/M, 0.8% versus 2.6%; V108I, 3.3% versus 9.2%; Y188L, 1.2% versus 2.6%; G190S, 0.3% versus 2.1%; F227C/L/V, 0.5% versus 1.8%; M230I/L, 2.8% versus 0%; L234I, 0.1% versus 0.5%; K103N + Y181C, 3.9% versus 3.9%; K103N + P225H, 2.9% versus 4.7%; and K103N + L100I, 1.7% versus 3.9%, with a significantly higher proportion of these mutations in the NNRTI-failing group (P < 0.05), except for M230I/L and K103N + Y181C. The overall prevalence of sequences with at least one doravirine-associated resistance mutation was 12.2% and 34.9% in the total dataset and NNRTI-failing patients (P < 0.001), respectively. In comparison, the prevalence of the common NNRTI mutations V90I, K101E/P, K103N/S, E138A/G/K/Q/R/S, Y181C/I/V and G190A/E/S/Q were higher (8.9%, 7.9%, 28.6%, 12.6%, 14.2% and 8.9%, respectively).
Conclusions
These results suggest that doravirine resistance in antiretroviral-experienced patients generally and specifically among NNRTI-failing patients is lower than resistance to other NNRTIs currently used, confirming its distinguishing resistance pattern.
Collapse
Affiliation(s)
- Cathia Soulie
- Sorbonne Université, INSERM, UMR_S 1136 Pierre Louis Institute of Epidemiology and Public Health, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | | | - Alexandre Storto
- Université de Paris, INSERM, UMR 1137 IAME, F-75018 Paris, France
| | - Basma Abdi
- Sorbonne Université, INSERM, UMR_S 1136 Pierre Louis Institute of Epidemiology and Public Health, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Charlotte Charpentier
- Université de Paris, INSERM, UMR 1137 IAME, F-75018 Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Daniele Armenia
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Aude Jary
- Sorbonne Université, INSERM, UMR_S 1136 Pierre Louis Institute of Epidemiology and Public Health, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Federica Forbici
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - William Gennari
- Clinic of Infectious Diseases, Modena University Hospital, Modena, Italy
| | - Massimo Andreoni
- Department of Clinical Infectious Diseases, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Cristina Mussini
- Clinic of Infectious Diseases, Modena University Hospital, Modena, Italy
| | - Andrea Antinori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | | | - Vincent Calvez
- Sorbonne Université, INSERM, UMR_S 1136 Pierre Louis Institute of Epidemiology and Public Health, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | | | - Diane Descamps
- Université de Paris, INSERM, UMR 1137 IAME, F-75018 Paris, France
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Anne-Genevieve Marcelin
- Sorbonne Université, INSERM, UMR_S 1136 Pierre Louis Institute of Epidemiology and Public Health, AP-HP, Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| |
Collapse
|
12
|
Verhofstede C, Mortier V, Dauwe K, Callens S, Deblonde J, Dessilly G, Delforge ML, Fransen K, Sasse A, Stoffels K, Van Beckhoven D, Vanroye F, Vaira D, Vancutsem E, Van Laethem K. Exploring HIV-1 Transmission Dynamics by Combining Phylogenetic Analysis and Infection Timing. Viruses 2019; 11:v11121096. [PMID: 31779195 PMCID: PMC6950120 DOI: 10.3390/v11121096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
HIV-1 pol sequences obtained through baseline drug resistance testing of patients newly diagnosed between 2013 and 2017 were analyzed for genetic similarity. For 927 patients the information on genetic similarity was combined with demographic data and with information on the recency of infection. Overall, 48.3% of the patients were genetically linked with 11.4% belonging to a pair and 36.9% involved in a cluster of ≥3 members. The percentage of early diagnosed (≤4 months after infection) was 28.6%. Patients of Belgian origin were more frequently involved in transmission clusters (49.7% compared to 15.3%) and diagnosed earlier (37.4% compared to 12.2%) than patients of Sub-Saharan African origin. Of the infections reported to be locally acquired, 69.5% were linked (14.1% paired and 55.4% in a cluster). Equal parts of early and late diagnosed individuals (59.9% and 52.4%, respectively) were involved in clusters. The identification of a genetically linked individual for the majority of locally infected patients suggests a high rate of diagnosis in this population. Diagnosis however is often delayed for >4 months after infection increasing the opportunities for onward transmission. Prevention of local infection should focus on earlier diagnosis and protection of the still uninfected members of sexual networks with human immunodeficiency virus (HIV)-infected members.
Collapse
Affiliation(s)
- Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (V.M.); (K.D.)
- Correspondence:
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (V.M.); (K.D.)
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (V.M.); (K.D.)
| | - Steven Callens
- Aids Reference Center, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Jessika Deblonde
- Epidemiology of Infectious Diseases Unit, Scientific Institute of Public Health Sciensano, 1050 Brussels, Belgium; (J.D.); (A.S.); (D.V.B.)
| | - Géraldine Dessilly
- Aids Reference Laboratory, Medical Microbiology Unit, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Marie-Luce Delforge
- Aids Reference Laboratory, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Katrien Fransen
- HIV/STD Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.F.); (F.V.)
| | - André Sasse
- Epidemiology of Infectious Diseases Unit, Scientific Institute of Public Health Sciensano, 1050 Brussels, Belgium; (J.D.); (A.S.); (D.V.B.)
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, 1000 Brussels, Belgium;
| | - Dominique Van Beckhoven
- Epidemiology of Infectious Diseases Unit, Scientific Institute of Public Health Sciensano, 1050 Brussels, Belgium; (J.D.); (A.S.); (D.V.B.)
| | - Fien Vanroye
- HIV/STD Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (K.F.); (F.V.)
| | - Dolores Vaira
- Aids Reference Laboratory, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium;
| | - Ellen Vancutsem
- Aids Reference Laboratory, Vrije Universiteit Brussel VUB, 1090 Brussels, Belgium;
| | - Kristel Van Laethem
- Aids Reference Laboratory, University Hospital Leuven, 3000 Leuven, Belgium;
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Delgado E, Benito S, Montero V, Cuevas MT, Fernández-García A, Sánchez-Martínez M, García-Bodas E, Díez-Fuertes F, Gil H, Cañada J, Carrera C, Martínez-López J, Sintes M, Pérez-Álvarez L, Thomson MM. Diverse Large HIV-1 Non-subtype B Clusters Are Spreading Among Men Who Have Sex With Men in Spain. Front Microbiol 2019; 10:655. [PMID: 31001231 PMCID: PMC6457325 DOI: 10.3389/fmicb.2019.00655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/15/2019] [Indexed: 11/23/2022] Open
Abstract
In Western Europe, the HIV-1 epidemic among men who have sex with men (MSM) is dominated by subtype B. However, recently, other genetic forms have been reported to circulate in this population, as evidenced by their grouping in clusters predominantly comprising European individuals. Here we describe four large HIV-1 non-subtype B clusters spreading among MSM in Spain. Samples were collected in 9 regions. A pol fragment was amplified from plasma RNA or blood-extracted DNA. Phylogenetic analyses were performed via maximum likelihood, including database sequences of the same genetic forms as the identified clusters. Times and locations of the most recent common ancestors (MRCA) of clusters were estimated with a Bayesian method. Five large non-subtype B clusters associated with MSM were identified. The largest one, of F1 subtype, was reported previously. The other four were of CRF02_AG (CRF02_1; n = 115) and subtypes A1 (A1_1; n = 66), F1 (F1_3; n = 36), and C (C_7; n = 17). Most individuals belonging to them had been diagnosed of HIV-1 infection in the last 10 years. Each cluster comprised viruses from 3 to 8 Spanish regions and also comprised or was related to viruses from other countries: CRF02_1 comprised a Japanese subcluster and viruses from 8 other countries from Western Europe, Asia, and South America; A1_1 comprised viruses from Portugal, United Kingom, and United States, and was related to the A1 strain circulating in Greece, Albania and Cyprus; F1_3 was related to viruses from Romania; and C_7 comprised viruses from Portugal and was related to a virus from Mozambique. A subcluster within CRF02_1 was associated with heterosexual transmission. Near full-length genomes of each cluster were of uniform genetic form. Times of MRCAs of CRF02_1, A1_1, F1_3, and C_7 were estimated around 1986, 1989, 2013, and 1983, respectively. MRCA locations for CRF02_1 and A1_1 were uncertain (however initial expansions in Spain in Madrid and Vigo, respectively, were estimated) and were most probable in Bilbao, Spain, for F1_3 and Portugal for C_7. These results show that the HIV-1 epidemic among MSM in Spain is becoming increasingly diverse through the expansion of diverse non-subtype B clusters, comprising or related to viruses circulating in other countries.
Collapse
Affiliation(s)
- Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Aurora Fernández-García
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mónica Sánchez-Martínez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena García-Bodas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Díez-Fuertes
- AIDS Immunopathogenesis Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,European Program for Public Health Microbiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Javier Cañada
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Carrera
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Martínez-López
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos Sintes
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
14
|
Chaillon A, Delaugerre C, Brenner B, Armero A, Capitant C, Nere ML, Leturque N, Pialoux G, Cua E, Tremblay C, Smith DM, Goujard C, Meyer L, Molina JM, Chaix ML. In-depth Sampling of High-risk Populations to Characterize HIV Transmission Epidemics Among Young MSM Using PrEP in France and Quebec. Open Forum Infect Dis 2019; 6:ofz080. [PMID: 30899768 PMCID: PMC6422434 DOI: 10.1093/ofid/ofz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/25/2023] Open
Abstract
Background A better understanding of HIV transmission dynamics among populations at high risk is important for development of prevention strategies. We determined HIV transmission networks from infected individuals enrolled in the pre-exposure prophylaxis (PrEP) IPERGAY trial in combination with the ANRS PRIMO and Montreal PHI cohorts to identify and characterize active clusters of transmission in this high-risk population. Methods Genotypic resistance tests were performed on plasma samples from 31 IPERGAY participants. Reverse transcriptase sequences were analyzed in combination with unique HIV pol sequences from 1351 individuals enrolled in the PRIMO ANRS cohort (1999–2014) and 511 individuals enrolled in the Montreal PHI cohort (1996–2016). Network analyses were performed to infer putative relationships between all participants. Results Overall, 1893 participants were included. Transmission network analyses revealed that 14 individuals (45.2%) from the IPERGAY trial were involved in 13 clusters sampled over a median period (interquartile range) of 2 (0.3–7.8) years, including 7 dyads and 6 larger clusters ranging from 4 to 28 individuals. When comparing characteristics between clustering individuals enrolled in the PRIMO cohort (n = 377) and in IPERGAY (n = 14), we found that IPERGAY participants had a higher viral load (5.93 vs 5.20 log10 copies/mL, P = .032) and reported a higher number of partners in the last 2 months (P < .01). Conclusions These results demonstrate high rates of HIV transmission clustering among young high-risk MSM enrolled in the IPERGAY trial. In-depth sampling of high-risk populations may help to uncover unobserved transmission intermediaries and improve prevention efforts that could be targeted to the most active clusters.
Collapse
Affiliation(s)
- Antoine Chaillon
- Department of Medicine, University of California, San Diego, San Diego, California
| | - Constance Delaugerre
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, CNR VIH, Paris, France.,INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Sorbonne Paris Cité, Université Paris Diderot, Hôpital Saint Louis, Paris, France
| | - Bluma Brenner
- BB, Lady Davis Institute, Departments of Medicine, McGill University, Montreal, Canada
| | - Alix Armero
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, CNR VIH, Paris, France
| | | | - Marie Laure Nere
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, CNR VIH, Paris, France
| | | | - Gilles Pialoux
- Maladies Infectieuses, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eric Cua
- Maladies Infectieuses, Hôpital de l'Archet, Centre Hospitalier de Nice, Nice, France
| | - Cecile Tremblay
- Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, San Diego, California
| | - Cecile Goujard
- Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,INSERM CESP U1018, Université Paris Sud, Université Paris Saclay, Saint-Aubin, France
| | - Laurence Meyer
- INSERM SC10 US19, Villejuif, France.,Assistance Publique Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.,INSERM CESP U1018, Université Paris Sud, Université Paris Saclay, Saint-Aubin, France
| | - Jean Michel Molina
- INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Sorbonne Paris Cité, Université Paris Diderot, Hôpital Saint Louis, Paris, France.,Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marie Laure Chaix
- Virologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, CNR VIH, Paris, France.,INSERM U944, CNRS UMR 7212, Institut Universitaire d'Hématologie, Sorbonne Paris Cité, Université Paris Diderot, Hôpital Saint Louis, Paris, France
| |
Collapse
|
15
|
Capetti A, Rizzardini G. Choosing appropriate pharmacotherapy for drug-resistant HIV. Expert Opin Pharmacother 2019; 20:667-678. [DOI: 10.1080/14656566.2019.1570131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amedeo Capetti
- Divisione Malattie Infettive, Aziende Socio Sanitarie Territoriale Fatebenefratelli Sacco, Milano, Italy
| | - Giuliano Rizzardini
- Divisione Malattie Infettive, Aziende Socio Sanitarie Territoriale Fatebenefratelli Sacco, Milano, Italy
- Faculty of Health Sciences, School of Clinical Medicine, Whitwaterstrand University, Johannesburg, South Africa
| |
Collapse
|
16
|
Oliveira M, Ibanescu RI, Anstett K, Mésplède T, Routy JP, Robbins MA, Brenner BG. Selective resistance profiles emerging in patient-derived clinical isolates with cabotegravir, bictegravir, dolutegravir, and elvitegravir. Retrovirology 2018; 15:56. [PMID: 30119633 PMCID: PMC6098636 DOI: 10.1186/s12977-018-0440-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/11/2018] [Indexed: 11/26/2022] Open
Abstract
Background Integrase strand transfer inhibitors (INSTIs) are recommended for first-line HIV therapy based on their relatively high genetic barrier to resistance. Although raltegravir (RAL) and elvitegravir (EVG) resistance profiles are well-characterized, resistance patterns for dolutegravir (DTG), bictegravir (BIC), and cabotegravir (CAB) remain largely unknown. Here, in vitro drug selections compared the development of resistance to DTG, BIC, CAB, EVG and RAL using clinical isolates from treatment-naïve primary HIV infection (PHI) cohort participants (n = 12), and pNL4.3 recombinant strains encoding patient-derived Integrase with (n = 5) and without (n = 5) the E157Q substitution. Results Patient-derived viral isolates were serially passaged in PHA-stimulated cord blood mononuclear cells in the presence of escalating concentrations of INSTIs over the course of 36–46 weeks. Drug resistance arose more rapidly in primary clinical isolates with EVG (12/12), followed by CAB (8/12), DTG (8/12) and BIC (6/12). For pNL4.3 recombinant strains encoding patient-derived integrase, the comparative genetic barrier to resistance was RAL > EVG > CAB > DTG and BIC. The E157Q substitution in integrase delayed the advent of resistance to INSTIs. With EVG, T66I/A, E92G/V/Q, T97A or R263K (n = 16, 3, 2 and 1, respectively) arose by weeks 8–16, followed by 1–4 accessory mutations, conferring high-level resistance (> 100-fold) by week 36. With DTG and BIC, solitary R263K (n = 27), S153F/Y (n = 7) H51Y (n = 2), Q146 R (n = 3) or S147G (n = 1) mutations conferred low-level (< 3-fold) resistance at weeks 36–46. Similarly, most CAB selections (n = 18) resulted in R263K, S153Y, S147G, H51Y, or Q146L solitary mutations. However, three CAB selections resulted in Q148R/K followed by secondary mutations conferring high-level cross-resistance to all INSTIs. EVG-resistant viruses (T66I/R263K, T66I/E157Q/R263K, and S153A/R263K) retained residual susceptibility when switched to DTG, BIC or CAB, losing T66I by week 27. Two EVG-resistant variants developed resistance to DTG, BIC and CAB through the additional acquisition of E138A/Q148R and S230N, respectively. One EVG-resistant variant (T66I) acquired L74M/G140S/S147G, L74M/E138K/S147G and H51Y with DTG CAB and BIC, respectively. Conclusions Second generation INSTIs show a higher genetic barrier to resistance than EVG and RAL. The potency of CAB was lower than BIC and DTG. The development of Q148R/K with CAB can result in high-level cross-resistance to all INSTIs.
Collapse
Affiliation(s)
- Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Kaitlin Anstett
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Thibault Mésplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Faculty of Medicine (Surgery, Experimental Medicine, Infectious Disease), McGill University, Montreal, QC, Canada
| | | | - Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada. .,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada. .,Faculty of Medicine (Surgery, Experimental Medicine, Infectious Disease), McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
17
|
Rossetti B, Di Giambenedetto S, Torti C, Postorino MC, Punzi G, Saladini F, Gennari W, Borghi V, Monno L, Pignataro AR, Polilli E, Colafigli M, Poggi A, Tini S, Zazzi M, De Luca A. Evolution of transmitted HIV-1 drug resistance and viral subtypes circulation in Italy from 2006 to 2016. HIV Med 2018; 19:619-628. [PMID: 29932313 DOI: 10.1111/hiv.12640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim was to evaluate the evolution of transmitted HIV-1 drug resistance (TDR) prevalence in antiretroviral therapy (ART)-naïve patients from 2006 to 2016. METHODS HIV-1 sequences were retrieved from the Antiviral Response Cohort Analysis (ARCA) database and TDR was defined as detection of at least one mutation from the World Health Organization (WHO) surveillance list. RESULTS We included protease/reverse transcriptase sequences from 3573 patients; 455 had also integrase sequences. Overall, 68.1% of the patients were Italian, the median CD4 count was 348 cells/μL [interquartile range (IQR) 169-521 cells/μL], and the median viral load was 4.7 log10 HIV-1 RNA copies/mL (IQR 4.1-5.3 log10 copies/mL). TDR was detected in 10.3% of patients: 6% carried mutations to nucleos(t)ide reverse transcriptase inhibitors (NRTIs), 4.4% to nonnucleos(t)ide reverse transcriptase inhibitors (NNRTIs), 2.3% to protease inhibitors (PIs), 0.2% to integrase strand transfer inhibitors (INSTIs) and 2.1% to at least two drug classes. TDR declined from 14.5% in 2006 to 7.3% in 2016 (P = 0.003): TDR to NRTIs from 9.9 to 2.9% (P = 0.003) and TDR to NNRTIs from 5.1 to 3.7% (P = 0.028); PI TDR remained stable. The proportion carrying subtype B virus declined from 76.5 to 50% (P < 0.001). The prevalence of TDR was higher in subtype B vs. non-B (12.6 vs. 4.9%, respectively; P < 0.001) and declined significantly in subtype B (from 17.1 to 8.8%; P = 0.04) but not in non-B subtypes (from 6.1 to 5.8%; P = 0.44). Adjusting for country of origin, predictors of TDR were subtype B [adjusted odds ratio (AOR) for subtype B vs. non-B 2.91; 95% confidence interval (CI) 1.93-4.39; P < 0.001], lower viral load (per log10 higher: AOR 0.86; 95% CI 0.75-0.99; P = 0.03), site in northern Italy (AOR for southern Italy/island vs. northern Italy, 0.61; 95% CI 0.40-0.91; P = 0.01), and earlier calendar year (per 1 year more recent: AOR 0.95; 95% CI 0.91-0.99; P = 0.02). CONCLUSIONS The prevalence of HIV-1 TDR has declined during the last 10 years in Italy.
Collapse
Affiliation(s)
- B Rossetti
- Infectious Diseases Unit, University Hospital of Siena, Siena, Italy
| | - S Di Giambenedetto
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - C Torti
- Infectious Diseases Unit, Catanzaro, Italy
| | | | - G Punzi
- Virology, Bari Hospital, Bari, Italy
| | - F Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - W Gennari
- Virology, Modena Hospital, Modena, Italy
| | - V Borghi
- Infectious Diseases Unit, Modena Hospital, Modena, Italy
| | - L Monno
- Infectious Diseases Unit, Bari Hospital, Bari, Italy
| | | | - E Polilli
- Virology, Pescara Hospital, Pescara, Italy
| | - M Colafigli
- Clinic of Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy
| | - A Poggi
- Infectious Diseases Unit, S. Maria Annunziata Hospital, Firenze, Italy
| | - S Tini
- Medicine Department, Città di Castello, Italy
| | - M Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - A De Luca
- Infectious Diseases Unit, University Hospital of Siena, Siena, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|