1
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
2
|
Zhao Y, Zheng Q, Xie J. Exploration of Gene Therapy for Alport Syndrome. Biomedicines 2024; 12:1159. [PMID: 38927366 PMCID: PMC11200676 DOI: 10.3390/biomedicines12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Alport syndrome is a hereditary disease caused by mutations in the genes encoding the alpha 3, alpha 4, and alpha 5 chains of type IV collagen. It is characterized by hematuria, proteinuria, progressive renal dysfunction, hearing loss, and ocular abnormalities. The main network of type IV collagen in the glomerular basement membrane is composed of α3α4α5 heterotrimer. Mutations in these genes can lead to the replacement of this network by an immature network composed of the α1α1α2 heterotrimer. Unfortunately, this immature network is unable to provide normal physical support, resulting in hematuria, proteinuria, and progressive renal dysfunction. Current treatment options for Alport syndrome include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, which aim to alleviate glomerular filtration pressure, reduce renal injury, and delay the progression of renal dysfunction. However, the effectiveness of these treatments is limited, highlighting the need for novel therapeutic strategies and medications to improve patient outcomes. Gene therapy, which involves the use of genetic material to prevent or treat diseases, holds promise for the treatment of Alport syndrome. This approach may involve the insertion or deletion of whole genes or gene fragments to restore or disrupt gene function or the editing of endogenous genes to correct genetic mutations and restore functional protein synthesis. Recombinant adeno-associated virus (rAAV) vectors have shown significant progress in kidney gene therapy, with several gene therapy drugs based on these vectors reaching clinical application. Despite the challenges posed by the structural characteristics of the kidney, the development of kidney gene therapy using rAAV vectors is making continuous progress. This article provides a review of the current achievements in gene therapy for Alport syndrome and discusses future research directions in this field.
Collapse
Affiliation(s)
- Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Wal P, Aziz N, Singh CP, Rasheed A, Tyagi LK, Agrawal A, Wal A. Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders. Curr Gene Ther 2024; 24:356-376. [PMID: 38288826 DOI: 10.2174/0115665232268840231222035423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 07/16/2024]
Abstract
Cardiovascular disorders (CVD) are the primary cause of death worldwide. Multiple factors have been accepted to cause cardiovascular diseases; among them, smoking, physical inactivity, unhealthy eating habits, age, and family history are flag-bearers. Individuals at risk of developing CVD are suggested to make drastic habitual changes as the primary intervention to prevent CVD; however, over time, the disease is bound to worsen. This is when secondary interventions come into play, including antihypertensive, anti-lipidemic, anti-anginal, and inotropic drugs. These drugs usually undergo surgical intervention in patients with a much higher risk of heart failure. These therapeutic agents increase the survival rate, decrease the severity of symptoms and the discomfort that comes with them, and increase the overall quality of life. However, most individuals succumb to this disease. None of these treatments address the molecular mechanism of the disease and hence are unable to halt the pathological worsening of the disease. Gene therapy offers a more efficient, potent, and important novel approach to counter the disease, as it has the potential to permanently eradicate the disease from the patients and even in the upcoming generations. However, this therapy is associated with significant risks and ethical considerations that pose noteworthy resistance. In this review, we discuss various methods of gene therapy for cardiovascular disorders and address the ethical conundrum surrounding it.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | | | - Azhar Rasheed
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| | - Lalit Kumar Tyagi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Ankur Agrawal
- School of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), NH-19, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
4
|
Lima ES, dos Santos D, Souza AL, Macedo ME, Bandeira ME, Junior SSS, Fiuza BSD, Rocha VPC, dos Santos Fonseca LM, Nunes DDG, Hodel KVS, Machado BAS. RNA Combined with Nanoformulation to Advance Therapeutic Technologies. Pharmaceuticals (Basel) 2023; 16:1634. [PMID: 38139761 PMCID: PMC10745936 DOI: 10.3390/ph16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC (Integrated Manufacturing and Technology Campus), Salvador 41650-010, Brazil; (E.S.L.); (D.d.S.); (A.L.S.); (M.E.M.); (M.E.B.); (S.S.S.J.); (B.S.D.F.); (V.P.C.R.); (L.M.d.S.F.); (D.D.G.N.); (K.V.S.H.)
| |
Collapse
|
5
|
Sauter MM, Noel H, Brandt CR. The RLR intrinsic antiviral system is expressed in neural retina and restricts lentiviral transduction of human Mueller cells. Exp Eye Res 2023; 236:109647. [PMID: 37689341 PMCID: PMC10834037 DOI: 10.1016/j.exer.2023.109647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The retinoic acid-inducible gene I (RIG)-I-like receptor (RLR) family of RNA sensor proteins plays a key role in the innate immune response to viral nucleic acids, including viral gene delivery vectors, but little is known about the expression of RLR proteins in the retina. The purpose of this study was to characterize cell-specific expression patterns of RLR proteins in non-human primate (NHP) neural retina tissue and to examine if RLR pathway signaling restricts viral gene delivery transduction. Since RLR protein signaling converges at the mitochondrial antiviral signaling protein (MAVS), experiments were performed to determine if knockdown of MAVS affected FIVGFP transduction efficiency in the human Mueller cell line MIO-M1. Immunoblotting confirmed expression of RIG-I, melanoma differentiation-associated protein 5 (MDA5), laboratory of genetics and physiology 2 (LGP2), and MAVS proteins in MIO-M1 cells and NHP retina tissue. Double label immunofluorescence (IF) studies revealed RIG-I, LGP2, and MAVS were expressed in Mueller microglial cells in the NHP retina. In addition, LGP2 and MDA5 proteins were detected in cone and retinal ganglion cells (RGC). MDA5 was also present in a subset of calretinin positive amacrine cells, and in nuclei within the inner nuclear layer (INL). Knockdown of MAVS significantly increased the transduction efficiency of the lentiviral vector FIVGFP in MIO-M1 cells, compared to control cells. FIVGFP or AAVGFP challenge did not alter expression of the LGP2, MAVS, MDA5 or RIG-I genes in MIO-M1 cells or NHP retina tissue compared to media treated controls. Our data demonstrate that innate immune response proteins involved in viral RNA sensing, including MDA5, RIG-I, LGP2, and MAVS, are expressed in several cell types within the NHP neural retina. In addition, the MAVS protein restricts non-human lentiviral transduction efficiency in MIO-M1 cells.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hongyu Noel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Han G, Wei P, Han Q. Application of IPSC and Müller glia derivatives in retinal degenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:351-362. [PMID: 37678979 DOI: 10.1016/bs.pmbts.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Retinal degenerative diseases cause blindness characterized by a progressive decline in the number and function of retinal pigment epithelium (RPE), photoreceptor cells, and ganglion cells. Such diseases include retinitis pigmentosa (RP), glaucomatous optic neuropathy, age-related macular degeneration and diabetic optic neuropathy. Recent studies have demonstrated that Müller glial cells (MGCs), an endogenous alternative source of retinal neurons, are important glial cells involved in retinal development, damage, and regeneration, making it an excellent target for retinal nerve regeneration. Although hardly differentiate into neuron cells, transplanted MGCs have been shown to induce partial recovery of visual function in experimental retinal degenerative models. This improvement is possibly attributed to the release of neuroprotective factors that derived from the MGCs. With the development of the therapeutic usage of pluripotent stem cell, application of induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) originated derivation of MGCs have been widely used in retinal degenerative disease model such as glaucoma and retinitis pigmentosa model. This chapter summarized the relevant research and mechanisms and provided a broader application and research prospects for effective treatments in retinal degenerative diseases.
Collapse
Affiliation(s)
- Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, P.R. China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P.R. China.
| | - Pinghui Wei
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, P.R. China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P.R. China
| | - Quanhong Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, P.R. China; Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, P.R. China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, P.R. China
| |
Collapse
|
7
|
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci 2023; 24:ijms24097736. [PMID: 37175441 PMCID: PMC10177981 DOI: 10.3390/ijms24097736] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Gene therapy is a technique involving the modification of an individual's genes for treating a particular disease. The key to effective gene therapy is an efficient carrier delivery system. Viral vectors that have been artificially modified to lose their pathogenicity are used widely as a delivery system, with the key advantages of their natural high transduction efficiency and stable expression. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes. Currently, the three key vector strategies are based on adeno-associated viruses, adenoviruses, and lentiviruses. However, certain challenges, such as immunotoxicity and "off-target", continue to exist. In the present review, the above three viral vectors are discussed along with their respective therapeutic applications. In addition, the major translational challenges encountered in viral vector-based gene therapies are summarized, and the possible strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Yang Le
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhegang Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Bo Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
8
|
Battu R, Ratra D, Gopal L. Newer therapeutic options for inherited retinal diseases: Gene and cell replacement therapy. Indian J Ophthalmol 2022; 70:2316-2325. [PMID: 35791112 PMCID: PMC9426045 DOI: 10.4103/ijo.ijo_82_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inherited retinal diseases (IRD) are genotypically and phenotypically varied disorders that lead to progressive degeneration of the outer retina and the retinal pigment epithelium (RPE) eventually resulting in severe vision loss. Recent research and developments in gene therapy and cell therapy have shown therapeutic promise in these hitherto incurable diseases. In gene therapy, copies of a healthy gene are introduced into the host cells via a viral vector. Clinical trials for several genes are underway while treatment for RPE65 called voretigene neparvovec, is already approved and commercially available. Cell therapy involves the introduction of stem cells that can replace degenerated cells. These therapies are delivered to the target tissues, namely the photoreceptors (PR) and RPE via subretinal, intravitreal, or suprachoroidal delivery systems. Although there are several limitations to these therapies, they are expected to slow the disease progression and restore some visual functions. Further advances such as gene editing technologies are likely to result in more precise and personalized treatments. Currently, several IRDs such as retinitis pigmentosa, Stargardt disease, Leber congenital amaurosis, choroideremia, achromatopsia, and Usher syndrome are being evaluated for possible gene therapy or cell therapy. It is important to encourage patients to undergo gene testing and maintain a nationwide registry of IRDs. This article provides an overview of the basics of these therapies and their current status.
Collapse
Affiliation(s)
- Rajani Battu
- Aster CMI Hospital; Centre for Eye Genetics and Research, Bengaluru, Karnataka, India
| | - Dhanashree Ratra
- Department of Vitreoretinal Diseases, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Lingam Gopal
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Eye Research, Singapore
| |
Collapse
|
9
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
10
|
Seah I, Goh D, Chan HW, Su X. Developing Non-Human Primate Models of Inherited Retinal Diseases. Genes (Basel) 2022; 13:344. [PMID: 35205388 PMCID: PMC8872446 DOI: 10.3390/genes13020344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Inherited retinal diseases (IRDs) represent a genetically and clinically heterogenous group of diseases that can eventually lead to blindness. Advances in sequencing technologies have resulted in better molecular characterization and genotype-phenotype correlation of IRDs. This has fueled research into therapeutic development over the recent years. Animal models are required for pre-clinical efficacy assessment. Non-human primates (NHP) are ideal due to the anatomical and genetic similarities shared with humans. However, developing NHP disease to recapitulate the disease phenotype for specific IRDs may be challenging from both technical and cost perspectives. This review discusses the currently available NHP IRD models and the methods used for development, with a particular focus on gene-editing technologies.
Collapse
Affiliation(s)
- Ivan Seah
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119 228, Singapore; (I.S.); (H.W.C.)
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119 228, Singapore;
| | - Hwei Wuen Chan
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119 228, Singapore; (I.S.); (H.W.C.)
- Department of Ophthalmology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119 228, Singapore;
| | - Xinyi Su
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119 228, Singapore; (I.S.); (H.W.C.)
- Department of Ophthalmology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119 228, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138 673, Singapore
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169 856, Singapore
| |
Collapse
|
11
|
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med 2022; 7:e10258. [PMID: 35079633 PMCID: PMC8780015 DOI: 10.1002/btm2.10258] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapies are currently one of the most investigated therapeutic modalities in both the preclinical and clinical settings and have shown promise in treating a diverse spectrum of diseases. Gene therapies aim at introducing a gene material in target cells and represent a promising approach to cure diseases that were thought to be incurable by conventional modalities. In many cases, a gene therapy requires a vector to deliver gene therapeutics into target cells; viral vectors are among the most widely studied vectors owing to their distinguished advantages such as outstanding transduction efficiency. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes with many products approved for treating a range of diseases including cancer, infectious diseases and monogenic diseases. In addition, a number of active clinical trials are underway to further expand their therapeutic potential. In this review, we highlight the diversity of viral vectors, review approved products, and discuss the current clinical landscape of in vivo viral vector-based gene therapies. We have reviewed 13 approved products and their clinical applications. We have also analyzed more than 200 active trials based on various viral vectors and discussed their respective therapeutic applications. Moreover, we provide a critical analysis of the major translational challenges for in vivo viral vector-based gene therapies and discuss possible strategies to address the same.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
12
|
Tagging and Capturing of Lentiviral Vectors Using Short RNAs. Int J Mol Sci 2021; 22:ijms221910263. [PMID: 34638603 PMCID: PMC8508951 DOI: 10.3390/ijms221910263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022] Open
Abstract
Lentiviral (LV) vectors have emerged as powerful tools for transgene delivery ex vivo but in vivo gene therapy applications involving LV vectors have faced a number of challenges, including the low efficiency of transgene delivery, a lack of tissue specificity, immunogenicity to both the product encoded by the transgene and the vector, and the inactivation of the vector by the human complement cascade. To mitigate these issues, several engineering approaches, involving the covalent modification of vector particles or the incorporation of specific protein domains into the vector’s envelope, have been tested. Short synthetic oligonucleotides, including aptamers bound to the surface of LV vectors, may provide a novel means with which to retarget LV vectors to specific cells and to shield these vectors from neutralization by sera. The purpose of this study was to develop strategies to tether nucleic acid sequences, including short RNA sequences, to LV vector particles in a specific and tight fashion. To bind short RNA sequences to LV vector particles, a bacteriophage lambda N protein-derived RNA binding domain (λN), fused to the measles virus hemagglutinin protein, was used. The λN protein bound RNA sequences bearing a boxB RNA hairpin. To test this approach, we used an RNA aptamer specific to the human epidermal growth factor receptor (EGFR), which was bound to LV vector particles via an RNA scaffold containing a boxB RNA motif. The results obtained confirmed that the EGFR-specific RNA aptamer bound to cells expressing EGFR and that the boxB containing the RNA scaffold was bound specifically to the λN RNA binding domain attached to the vector. These results show that LV vectors can be equipped with nucleic acid sequences to develop improved LV vectors for in vivo applications.
Collapse
|
13
|
Argaw T, Marino MP, Timmons A, Eldridge L, Takeda K, Li P, Kwilas A, Ou W, Reiser J. In vivo targeting of lentiviral vectors pseudotyped with the Tupaia paramyxovirus H glycoprotein bearing a cell-specific ligand. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:670-680. [PMID: 34141822 PMCID: PMC8166926 DOI: 10.1016/j.omtm.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Despite their exceptional capacity for transgene delivery ex vivo, lentiviral (LV) vectors have been slow to demonstrate clinical utility in the context of in vivo applications. Unresolved safety concerns related to broad LV vector tropism have limited LV vectors to ex vivo applications. Here, we report on a novel LV vector-pseudotyping strategy involving envelope glycoproteins of Tupaia paramyxovirus (TPMV) engineered to specifically target human cell-surface receptors. LV vectors pseudotyped with the TPMV hemagglutinin (H) protein bearing the interleukin (IL)-13 ligand in concert with the TPMV fusion (F) protein allowed efficient transduction of cells expressing the human IL-13 receptor alpha 2 (IL-13Rα2). Immunodeficient mice bearing orthotopically implanted human IL-13Rα2 expressing NCI-H1299 non-small cell lung cancer cells were injected intravenously with a single dose of LV vector pseudotyped with the TPMV H-IL-13 glycoprotein. Vector biodistribution was monitored using bioluminescence imaging of firefly luciferase transgene expression, revealing specific transduction of tumor tissue. A quantitative droplet digital PCR (ddPCR) analysis of lung tissue samples revealed a >15-fold increase in the tumor transduction in mice treated with LV vectors displaying IL-13 relative to those without IL-13. Our results show that TPMV envelope glycoproteins can be equipped with ligands to develop targeted LV vectors for in vivo applications.
Collapse
Affiliation(s)
- Takele Argaw
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Michael P. Marino
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Andrew Timmons
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Lindsey Eldridge
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Pingjuan Li
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
- Vedere Bio, Inc., Cambridge, MA 02139, USA
| | - Anna Kwilas
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
- Corresponding author: Jakob Reiser, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, 10903 New Hampshire Avenue, Building 52/72, Room 3106, Silver Spring, MD 20993, USA.
| |
Collapse
|
14
|
Sauter MM, Brandt CR. Knockdown of TRIM5α or TRIM11 increases lentiviral vector transduction efficiency of human Muller cells. Exp Eye Res 2021; 204:108436. [PMID: 33440192 DOI: 10.1016/j.exer.2021.108436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
The goal of this study was to determine the expression and distribution of the host restriction factors (RFs) TRIM5α and TRIM11 in non-human primate (NHP) neural retina tissue and the human Muller cell line MIO-M1. In addition, experiments were performed to determine the effect of TRIM5α and TRIM11 knockdown on FIVGFP transduction of MIO-M1 cells with the goal of devising strategies to increase the efficiency of lentiviral (LV) gene delivery. Immunofluorescence (IF) studies indicated that TRIM5α and TRIM11 were localized predominantly in nuclei within the outer nuclear layer (ONL) and inner nuclear layer (INL) of NHP retina tissue. Double label IF indicated that TRIM5α and TRIM11 were localized to some of the retinal Muller cell nuclei. MIO-M1 cells expressed TRIM5α predominantly in the nucleus and TRIM11 primarily in the cytosol. FIVGFP transduction efficiency was significantly increased, at 4 and 7 days post transduction, in TRIM5α and TRIM11 knockdown clones (KD) compared to WT MIO-M1 cells. In addition, pretreatment with the proteasome inhibitor MG132 increased the transduction efficiency of FIVGFP in WT MIO-M1 cells. The nuclear translocation of NF-κB (p65), at 72 h post FIVGFP transduction, was enhanced in TRIM5α and TRIM11 KD clones. The expression of TRIM5α and TRIM11 in macaque neural retina tissue and MIO-M1 cells indicate the presence of these RFs in NHP retina and human Muller cells. Our data indicate that even partial knockdown of TRIM5α or TRIM11, or a short proteasome inhibitor pretreatment, can increase the transduction efficiency of a LV vector.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv Drug Deliv Rev 2021; 168:181-195. [PMID: 32603815 DOI: 10.1016/j.addr.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.
Collapse
|
16
|
Ferreira MV, Cabral ET, Coroadinha AS. Progress and Perspectives in the Development of Lentiviral Vector Producer Cells. Biotechnol J 2020; 16:e2000017. [PMID: 32686901 DOI: 10.1002/biot.202000017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Indexed: 12/12/2022]
Abstract
After two decades of clinical trials, gene therapy demonstrated effectiveness in the treatment of a series of diseases. Currently, several gene therapy products are approved and used in the clinic. Lentiviral vectors (LVs) are one of the most used transfer vehicles to deliver genetic material and the vector of choice to modify hematopoietic cells to correct primary immunodeficiencies, hemoglobinopathies, and leukodystrophies. LVs are also widely used to modify T cells to treat cancers in immunotherapies (e.g., chimeric antigen receptors T cell therapies, CAR-T). In genome editing, LVs are used to deliver sequence-specific designer nucleases and DNA templates. The approval LV gene therapy products (e.g., Kymriah, for B-cell Acute lymphoblastic leukemia treatment; LentiGlobin, for β-thalassemia treatment) reinforced the need to improve their bioprocess manufacturing. The production has been mostly dependent on transient transfection. Production from stable cell lines facilitate GMP compliant processes, providing an easier scale-up, reproducibility and cost-effectiveness. The establishment of stable LV producer cell lines presents, however, several difficulties, with the cytotoxicity of some of the vector proteins being a major challenge. Genome editing technologies pose additional challenges to LV producer cells. Herein the major bottlenecks, recent achievements, and perspectives in the development of LV stable cell lines are revised.
Collapse
Affiliation(s)
- Mariana V Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Elisa T Cabral
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,The Discoveries centre for Regenerative and Precision Medicine, Nova University Lisbon, Oeiras Campus, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
17
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|