1
|
Dagostin F, Tagliapietra V, Marini G, Ferrari G, Cervellini M, Wint W, Alexander NS, Zuccali MG, Molinaro S, Fiorito N, Dub T, Rocchini D, Rizzoli A. High habitat richness reduces the risk of tick-borne encephalitis in Europe: A multi-scale study. One Health 2024; 18:100669. [PMID: 38283833 PMCID: PMC10820641 DOI: 10.1016/j.onehlt.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Background The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. Methods We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. Findings Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. Interpretation To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease risk.
Collapse
Affiliation(s)
- Francesca Dagostin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Valentina Tagliapietra
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Giulia Ferrari
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marco Cervellini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management Unit, University of Camerino, Italy
| | - William Wint
- Environmental Research Group Oxford Ltd, c/o Dept Biology, Oxford, United Kingdom
| | - Neil S. Alexander
- Environmental Research Group Oxford Ltd, c/o Dept Biology, Oxford, United Kingdom
| | | | | | | | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life, Czech Republic
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Bakker JW, Pascoe EL, van de Water S, van Keulen L, de Vries A, Woudstra LC, Esser HJ, Pijlman GP, de Boer WF, Sprong H, Kortekaas J, Wichgers Schreur PJ, Koenraadt CJM. Infection of wild-caught wood mice (Apodemus sylvaticus) and yellow-necked mice (A. flavicollis) with tick-borne encephalitis virus. Sci Rep 2023; 13:21627. [PMID: 38062065 PMCID: PMC10703896 DOI: 10.1038/s41598-023-47697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
The distribution of tick-borne encephalitis virus (TBEV) is expanding to Western European countries, including the Netherlands, but the contribution of different rodent species to the transmission of TBEV is poorly understood. We investigated whether two species of wild rodents native to the Netherlands, the wood mouse Apodemus sylvaticus and the yellow-necked mouse Apodemus flavicollis, differ in their relative susceptibility to experimental infection with TBEV. Wild-caught individuals were inoculated subcutaneously with the classical European subtype of TBEV (Neudoerfl) or with TBEV-NL, a genetically divergent TBEV strain from the Netherlands. Mice were euthanised and necropsied between 3 and 21 days post-inoculation. None of the mice showed clinical signs or died during the experimental period. Nevertheless, TBEV RNA was detected up to 21 days in the blood of both mouse species and TBEV was also isolated from the brain of some mice. Moreover, no differences in infection rates between virus strains and mouse species were found in blood, spleen, or liver samples. Our results suggest that the wood mouse and the yellow-necked mouse may equally contribute to the transmission cycle of TBEV in the Netherlands. Future experimental infection studies that include feeding ticks will help elucidate the relative importance of viraemic transmission in the epidemiology of TBEV.
Collapse
Affiliation(s)
- Julian W Bakker
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Emily L Pascoe
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lucien van Keulen
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ankje de Vries
- National Institute of Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Lianne C Woudstra
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Helen J Esser
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem F de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hein Sprong
- National Institute of Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
- Boehringer Ingelheim Animal Health, Saint Priest, France
| | - Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | |
Collapse
|
3
|
Brackney DE, Vogels CBF. The known unknowns of Powassan virus ecology. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1142-1148. [PMID: 37862099 PMCID: PMC10645372 DOI: 10.1093/jme/tjad095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 10/21/2023]
Abstract
Powassan virus (POWV; Family: Flaviviridae, Genus: Flavivirus) is the sole North American member of the tick-borne encephalitis sero-complex. While associated with high rates of morbidity and mortality, POWV has historically been of little public health concern due to low incidence rates. However, over the last 20 yr, incidence rates have increased highlighting the growing epidemiological threat. Currently, there are no vaccines or therapeutics with tick habitat reduction, acaricide application, and public awareness programs being our primary means of intervention. The effectiveness of these control strategies is dependent on having a sound understanding of the virus's ecology. In this Forum, we review what is currently known about POWV ecology, identify gaps in our knowledge, and discuss prevailing and alternative hypotheses about transmission dynamics, reservoir hosts, and spatial focality.
Collapse
Affiliation(s)
- Doug E Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
4
|
Brandenburg PJ, Obiegala A, Schmuck HM, Dobler G, Chitimia-Dobler L, Pfeffer M. Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany. Pathogens 2023; 12:pathogens12020185. [PMID: 36839457 PMCID: PMC9962257 DOI: 10.3390/pathogens12020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Tick-borne encephalitis (TBE) is Eurasia's most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the transmission cycle still need to be understood. To better understand the infection dynamics, rodents were captured in a capture-mark-release-recapture-study in two natural foci in Bavaria, Germany, monthly from March 2019 to October 2022. Overall, 651 blood and thoracic lavage samples from 478 different wild rodents (Clethrionomys glareolus and Apodemus flavicollis) were analyzed for antibodies against tick-borne encephalitis virus (TBEV) by indirect immunofluorescence assay (IIFA) and confirmed using a serum neutralization test (SNT). Furthermore, a generalized linear mixed model (GLMM) analysis was performed to investigate ecological and individual factors for the probability of infection in rodents. Clethrionomys glareolus (19.4%) had a higher seroprevalence than A. flavicollis (10.5%). Within Cl. glareolus, more males (40.4%) than females (15.6%) were affected, and more adults (25.4%) than juveniles (9.8%). The probability of infection of rodents rather depends on factors such as species, sex, and age than on the study site of a natural focus, year, and season. The high incidence rates of rodents, particularly male adult bank voles, highlight their critical role in the transmission cycle of TBEV in a natural focus and demonstrate that serologically positive rodents can be reliably detected in a natural focus regardless of season or year. In addition, these data contribute to a better understanding of the TBEV cycle and thus could improve preventive strategies for human infections.
Collapse
Affiliation(s)
- Philipp Johannes Brandenburg
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-97-38150
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Hannah Maureen Schmuck
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| | - Gerhard Dobler
- National Consulting Laboratory for TBE, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Lidia Chitimia-Dobler
- National Consulting Laboratory for TBE, Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Zhang M, Tian J, Li H, Cang M. The comparative genomic analysis provides insights into the phylogeny and virulence of tick-borne encephalitis virus vaccine strain Senzhang. PLoS One 2022; 17:e0273565. [PMID: 36018897 PMCID: PMC9417034 DOI: 10.1371/journal.pone.0273565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most dangerous tick-borne viral pathogens for humans. It can cause severe tick-borne encephalitis (TBE), multiple neurological complications, and death. The European subtype (TBEV-Eu), Siberian subtype (TBEV-Sib), and Far-Eastern subtype (TBEV-FE) are three main TBEV subtypes, causing varying clinical manifestations. Though TBEV-FE is the most virulent TBEV subtype, the degree of variation in the amino acid sequence of TBEV polyprotein is not high, leaving an issue without proper explanation. We performed phylogenic analysis on 243 TBEV strains and then took Senzhang strain as a query strain and representative strains of three major TBEV subtypes as reference strains to perform the comparative genomic analysis, including synteny analysis, SNP analysis, InDel analysis, and multiple sequence alignment of their envelope (E) proteins. The results demonstrated that insertions or deletions of large fragments occurred at the 3’ end but not at the 5’ end or in the CDS region of TBEV Senzhang strain. In addition, SNP sites are mainly located in the CDS region, with few SNP sites in the non-coding region. Our data highlighted the insertions or deletions of large fragments at the 3’ end and SNP sites in the CDS region as genomic properties of the TBEV Senzhang strain compared to representative strains with the main subtypes. These features are probably related to the virulence of the TBEV Senzhang strain and could be considered in future vaccine development and drug target screening for TBEV.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Jingyong Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Hongying Li
- Department of Pediatrics, Tongliao City General Hospital, Tongliao, Inner Mongolia, People’s Republic of China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
- * E-mail:
| |
Collapse
|
6
|
Michelitsch A, Fast C, Sick F, Tews BA, Stiasny K, Bestehorn-Willmann M, Dobler G, Beer M, Wernike K. Long-term presence of tick-borne encephalitis virus in experimentally infected bank voles (Myodes glareolus). Ticks Tick Borne Dis 2021; 12:101693. [PMID: 33690089 DOI: 10.1016/j.ttbdis.2021.101693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/27/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a vector-borne pathogen that can cause serious neurological symptoms in humans. Across large parts of Eurasia TBEV is found in three traditional subtypes: the European, the Siberian and the Far-eastern subtype. Small mammalian animals play an important role in the transmission cycle as they enable the spread of TBEV among the vector tick population. To assess the impact of TBEV infection on its natural hosts, outbred bank voles (Myodes glareolus) were inoculated with one out of four European TBEV strains. Three of these TBEV strains were recently isolated in Germany. The forth one was the TBEV reference strain Neudörfl. Sampling points at 7, 14, 28, and 56 days post inoculation allowed the characterization of the course of infection. At each time point, six animals per strain were euthanized and eleven organ samples (brain, spine, lung, heart, small and large intestine, liver, spleen, kidney, bladder, sexual organ) as well as whole blood and serum samples were collected. The majority of bank voles (92/96) remained clinically unaffected after the inoculation with TBEV, but still developed a systemic infection during the first week, which transitioned to a viraemia and an infestation of the brain in some animals for the remainder of the first month. Viral RNA was found in whole blood samples of several animals (50/96), but only in a small fraction of the corresponding serum samples (4/50). From the whole blood, virus was successfully reisolated in cell culture until 14 days after inoculation. Less than five percent of all inoculated bank voles (4/96) displayed signs of distress in combination with a rapid weight loss and had to be euthanized prematurely. Overall, the recently isolated TBEV strains showed marked differences, such as a more frequent development of long-term viraemia and a higher detection rate of viral RNA in various organs, in comparison to the reference strain Neudörfl. Overall, our data suggest that the bank vole is a potential amplifying host in the TBEV transmission cycle and appears to be highly adapted to circulating TBEV strains.
Collapse
Affiliation(s)
- Anna Michelitsch
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10,17493, Greifswald, Insel Riems, Germany.
| | - Franziska Sick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Birke Andrea Tews
- Institute of Infectology, Friedrich-Loeffler-Institut Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | | | - Gerhard Dobler
- Dept. of Parasitology, University of Hohenheim, Emil-Wolff-Str. 34, 70599, Stuttgart, Germany; Bundeswehr Institute of Microbiology, German Center of Infection Research (DZIF) Partner Site Munich, Neuherbergstraße 11, 80937, München, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
7
|
Contact-dependent transmission of Langat and tick-borne encephalitis virus in type I interferon receptor-1 deficient mice. J Virol 2021; 95:JVI.02039-20. [PMID: 33504602 PMCID: PMC8103697 DOI: 10.1128/jvi.02039-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is primarily transmitted to humans through tick bites or oral consumption of accordingly contaminated unpasteurized milk or milk products. The detection of TBEV RNA in various body fluids in immunosuppressed human patients is documented. However, the risk of direct contact exposure remains unclear. Interferon-alpha receptor-1 deficient (Ifnar1-/- ) mice, which are lacking the interferon-α/β responses, develop neurologic manifestations after infection with TBEV and Langat virus (LGTV). We showed that subcutaneous, intranasal, and peroral infection of LGTV lead to disease, whereas mice with intragastric application of LGTV showed no disease signs. With LGTV infected mice exhibit seroconversion and significant viral RNA levels was detected in saliva, eye smear, feces and urine. As a result, TBEV and LGTV are transmitted between mice from infected to naïve co-caged sentinel animals. Although intranasal inoculation of LGTV is entirely sufficient to establish the disease in mice, the virus is not transmitted by aerosols. These pooled results from animal models highlight the risks of exposure to TBEV contaminants and the possibility for close contact transmission of TBEV in interferon-alpha receptor-1 deficient laboratory mice.Importance Tick-borne encephalitis is a severe disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). Every year between 10,000-12,000 people become infected with this flavivirus. The TBEV is usually transmitted to humans via the bite of a tick, but infections due to consumption of infectious milk products are increasingly being reported. Since there is no therapy for an TBEV infection and mechanisms of virus persistence in reservoir animals are unclear, it is important to highlight the risk of exposure to TBEV contaminants and know possible routes of transmission of this virus. The significance of our research is in identifying other infection routes of TBEV and LGTV, and the possibility of close contact transmission.
Collapse
|
8
|
Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. JOURNAL OF NATURAL PRODUCTS 2021; 84:161-182. [PMID: 33352046 PMCID: PMC7771248 DOI: 10.1021/acs.jnatprod.0c00968] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 05/03/2023]
Abstract
Three families of RNA viruses, the Coronaviridae, Flaviviridae, and Filoviridae, collectively have great potential to cause epidemic disease in human populations. The current SARS-CoV-2 (Coronaviridae) responsible for the COVID-19 pandemic underscores the lack of effective medications currently available to treat these classes of viral pathogens. Similarly, the Flaviviridae, which includes such viruses as Dengue, West Nile, and Zika, and the Filoviridae, with the Ebola-type viruses, as examples, all lack effective therapeutics. In this review, we present fundamental information concerning the biology of these three virus families, including their genomic makeup, mode of infection of human cells, and key proteins that may offer targeted therapies. Further, we present the natural products and their derivatives that have documented activities to these viral and host proteins, offering hope for future mechanism-based antiviral therapeutics. By arranging these potential protein targets and their natural product inhibitors by target type across these three families of virus, new insights are developed, and crossover treatment strategies are suggested. Hence, natural products, as is the case for other therapeutic areas, continue to be a promising source of structurally diverse new anti-RNA virus therapeutics.
Collapse
Affiliation(s)
- Mitchell P. Christy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Yoshinori Uekusa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Deviatkin AA, Karganova GG, Vakulenko YA, Lukashev AN. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020; 12:E1240. [PMID: 33142676 PMCID: PMC7692686 DOI: 10.3390/v12111240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | - Galina G. Karganova
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
10
|
Tick-Borne Encephalitis Virus: Seasonal and Annual Variation of Epidemiological Parameters Related to Nymph-to-Larva Transmission and Exposure of Small Mammals. Pathogens 2020; 9:pathogens9070518. [PMID: 32605114 PMCID: PMC7400523 DOI: 10.3390/pathogens9070518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
A greater knowledge of the ecology of the natural foci of tick-borne encephalitis virus (TBEV) is essential to better assess the temporal variations of the risk of tick-borne encephalitis for humans. To describe the seasonal and inter-annual variations of the TBEV-cycle and the epidemiological parameters related to TBEV nymph-to-larva transmission, exposure of small mammals to TBEV, and tick aggregation on small mammals, a longitudinal survey in ticks and small mammals was conducted over a 3-year period in a mountain forest in Alsace, eastern France. TBEV prevalence in questing nymphs was lower in 2013 than in 2012 and 2014, probably because small mammals (Myodes glareolus and Apodemus flavicollis) were more abundant in 2012, which reduced tick aggregation and co-feeding transmission between ticks. The prevalence of TBEV in questing nymphs was higher in autumn than spring. Despite these variations in prevalence, the density of infected questing nymphs was constant over time, leading to a constant risk for humans. The seroprevalence of small mammals was also constant over time, although the proportion of rodents infested with ticks varied between years and seasons. Our results draw attention to the importance of considering the complex relationship between small mammal densities, tick aggregation on small mammals, density of infected questing nymphs, and prevalence of infected nymphs in order to forecast the risk of TBEV for humans.
Collapse
|