1
|
Song J, Lin LA, Tang C, Chen C, Yang Q, Zhang D, Zhao Y, Wei HC, Linghu K, Xu Z, Chen T, He Z, Liu D, Zhong Y, Zhu W, Zeng W, Chen L, Song G, Chen M, Jiang J, Zhou J, Wang J, Chen B, Ying B, Wang Y, Geng J, Lin JW, Chen L. DEMINERS enables clinical metagenomics and comparative transcriptomic analysis by increasing throughput and accuracy of nanopore direct RNA sequencing. Genome Biol 2025; 26:76. [PMID: 40155949 PMCID: PMC11954306 DOI: 10.1186/s13059-025-03536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Nanopore direct RNA sequencing (DRS) is a powerful tool for RNA biology but suffers from low basecalling accuracy, low throughput, and high input requirements. We present DEMINERS, a novel DRS toolkit combining an RNA multiplexing workflow, a Random Forest-based barcode classifier, and an optimized convolutional neural network basecaller with species-specific training. DEMINERS enables accurate demultiplexing of up to 24 samples, reducing RNA input and runtime. Applications include clinical metagenomics, cancer transcriptomics, and parallel transcriptomic comparisons, uncovering microbial diversity in COVID-19 and m6A's role in malaria and glioma. DEMINERS offers a robust, high-throughput solution for precise transcript and RNA modification analysis.
Collapse
Affiliation(s)
- Junwei Song
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-An Lin
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Tang
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Biosafety Laboratory, lnternational Center for Biological and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
- School of Pharmacy, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Qingxin Yang
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuancun Zhao
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Han-Cheng Wei
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
- Biosafety Laboratory, lnternational Center for Biological and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kepan Linghu
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijie Xu
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingfeng Chen
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhifeng He
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Defu Liu
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Zhong
- Biosafety Laboratory, lnternational Center for Biological and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanqin Zeng
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guiqin Song
- School of Pharmacy, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Juan Jiang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Jing Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bojiang Chen
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Yuan Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
| | - Jing-Wen Lin
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
- Biosafety Laboratory, lnternational Center for Biological and Translational Research, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lu Chen
- Department of Laboratory Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hodges AL, Walker LR, Everding T, Mote BE, Vu HLX, Ciobanu DC. Metagenomic detection and genome assembly of novel PRRSV-2 strain using Oxford Nanopore Flongle flow cell. J Anim Sci 2025; 103:skae395. [PMID: 39742418 PMCID: PMC11826234 DOI: 10.1093/jas/skae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/31/2024] [Indexed: 01/03/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of a syndrome characterized by reproductive failure and respiratory complications (PRRS). Early detection and classification of PRRSV strains are vital for appropriate management strategies to minimize loss following outbreaks. The most widely used classification method for PRRSV is based on open reading frame 5 (ORF5) sequences. However, the effectiveness of the ORF5-based classification system in accurately representing genetic variation is under scrutiny because ORF5 constitutes less than 5% of the 15kb-long genome. In this study, a single Oxford Nanopore Flongle flow cell was used to identify and assemble the genome of a strain sampled in May of 2022 from a Midwest research farm. Based on comparisons with available PRRSV genomes, the assembled genome was determined to be a novel PRRSV-2 strain belonging to the 1-4-4 L1C.5 ORF5-based lineage. Phylogenetic analyses of ORF5 and whole-genome sequences demonstrated differences in clustering between PRRSV strains, supporting the inability of ORF5 to capture genome-wide variation. For example, high levels of variation were observed within ORF1a, which encodes the hypervariable nsp2 protein. Comparison of the newly assembled genome with the genome of a highly characterized strain (VR2332 PRRSV-2) identified a 100 amino acid deletion within nsp2 characteristic of NADC34-like PRRSV. Oxford Nanopore Technologies' Flongle flow cell has been proven in this study to provide a rapid, cost-effective and accessible approach for whole-genome sequencing of PRRSV strains present within clinical samples necessary for strain-specific genome-wide characterization.
Collapse
Affiliation(s)
- Arabella L Hodges
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Lianna R Walker
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Talia Everding
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Benny E Mote
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Hiep L X Vu
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| | - Daniel C Ciobanu
- Animal Science Department, University of Nebraska–Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Pecman A, Mehle N, Kutnjak D. Detection of Plant Viruses Using Nanopore Sequencing Based Metagenomic Approach. Methods Mol Biol 2024; 2732:251-264. [PMID: 38060130 DOI: 10.1007/978-1-0716-3515-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Nanopore sequencing has proven to be a useful tool for the generic detection of plant viruses, especially in laboratories working with small number of samples. In this chapter, we describe the steps prior to library preparation as well as the library preparation itself, which we found provides comparable results to Illumina sequencing.
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Nataša Mehle
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Jakab S, Bali K, Freytag C, Pataki A, Fehér E, Halas M, Jerzsele Á, Szabó I, Szarka K, Bálint Á, Bányai K. Deep Sequencing of Porcine Reproductive and Respiratory Syndrome Virus ORF7: A Promising Tool for Diagnostics and Epidemiologic Surveillance. Animals (Basel) 2023; 13:3223. [PMID: 37893946 PMCID: PMC10603690 DOI: 10.3390/ani13203223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major concern worldwide. Control of PRRSV is a challenging task due to various factors, including the viral diversity and variability. In this study, we evaluated an amplicon library preparation protocol targeting the ORF7 region of both PRRSV species, Betaarterivirus suid 1 and Betaarterivirus suid 2. We designed tailed primers for a two-step PCR procedure that generates ORF7-specific amplicon libraries suitable for use on Illumina sequencers. We tested the method with serum samples containing common laboratory strains and with pooled serum samples (n = 15) collected from different pig farms during 2019-2021 in Hungary. Testing spiked serum samples showed that the newly designed method is highly sensitive and detects the viral RNA even at low copy numbers (corresponding to approx. Ct 35). The ORF7 sequences were easily assembled even from clinical samples. Two different sequence variants were identified in five samples, and the Porcilis MLV vaccine strain was identified as the minor variant in four samples. An in-depth analysis of the deep sequencing results revealed numerous polymorphic sites along the ORF7 gene in a total of eight samples, and some sites (positions 12, 165, 219, 225, 315, 345, and 351) were found to be common in several clinical specimens. We conclude that amplicon deep sequencing of a highly conserved region of the PRRSV genome could support both laboratory diagnosis and epidemiologic surveillance of the disease.
Collapse
Affiliation(s)
- Szilvia Jakab
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | - Csongor Freytag
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (C.F.); (K.S.)
| | - Anna Pataki
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
| | - Enikő Fehér
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
| | | | - Ákos Jerzsele
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary;
| | - István Szabó
- National PRRS Eradication Committee, Keleti Károly u. 24., H-1024 Budapest, Hungary;
| | - Krisztina Szarka
- Department of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (C.F.); (K.S.)
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143 Budapest, Hungary;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21., H-1143 Budapest, Hungary; (S.J.); (K.B.); (A.P.); (E.F.)
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Hungária krt. 21., H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u 2, H-1078 Budapest, Hungary;
| |
Collapse
|
5
|
Romeo C, Parisio G, Scali F, Tonni M, Santucci G, Maisano AM, Barbieri I, Boniotti MB, Stadejek T, Alborali GL. Complex interplay between PRRSV-1 genetic diversity, coinfections and antimicrobial use influences performance parameters in post-weaning pigs. Vet Microbiol 2023; 284:109830. [PMID: 37481996 DOI: 10.1016/j.vetmic.2023.109830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the main diseases of pigs, leading to large economic losses in swine production worldwide. PRRSV high mutation rate and low cross-protection between strains make PRRS control challenging. Through a semi-longitudinal approach, we analysed the relationships among performance parameters, PRRSV-1 genetic diversity, coinfections and antimicrobial use (AMU) in pig nurseries. We collected data over the course of five years in five PRRS-positive nurseries belonging to an Italian multisite operation, for a total of 86 batches and over 200,000 weaners involved. The farm experienced a severe PRRS outbreak in the farrowing unit at the onset of the study, but despite adopting vaccination of all sows, batch-level losses in nurseries in the following years remained constantly high (mean±SE: 11.3 ± 0.5 %). Consistently with previous studies, our phylogenetic analysis of ORF 7 sequences highlighted the peculiarity of strains circulating in Italy. Greater genetic distances between the strain circulating in a weaners' batch and strains from the farrowing unit and the previous batch were associated with increased mortality (p < 0.0001). All the respiratory and enteric coinfections contributed to an increase in losses (all p < 0.026), with secondary infections by Streptococcus suis and enteric bacteria also inducing an increase in AMU (both p < 0.041). Our findings highlight that relying solely on sows' vaccination is insufficient to contain PRRS losses, and the implementation of rigorous biosecurity measures is pivotal to limit PRRSV circulation among pig flows and consequently minimise the risk of exposure to genetically diverse strains that would increase production costs.
Collapse
Affiliation(s)
- Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - Giovanni Parisio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy.
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - Matteo Tonni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - Giovanni Santucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - Antonio M Maisano
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - Ilaria Barbieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - M Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - G Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna - IZSLER, via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
6
|
Pan J, Zeng M, Zhao M, Huang L. Research Progress on the detection methods of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1097905. [PMID: 36970703 PMCID: PMC10033578 DOI: 10.3389/fmicb.2023.1097905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes clinical syndromes typified as reproductive disorders in sows and respiratory diseases in piglets. PRRSV remains one of the most prevalent pathogens affecting the pig industry, because of its complex infection profile and highly heterogeneous genetic and recombination characteristics. Therefore, a rapid and effective PRRSV detection method is important for the prevention and control of PRRS. With extensive in-depth research on PRRSV detection methods, many detection methods have been improved and promoted. Laboratory methods include techniques based on virus isolation (VI), enzyme-linked immunosorbent assays (ELISA), indirect immunofluorescence assays (IFA), immunoperoxidase monolayer assays (IPMA), polymerase chain reaction (PCR), quantitative real-time PCR (qPCR), digital PCR (dPCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), clustered regularly interspaced short palindromic repeats (CRISPR), metagenomic next-generation sequencing (mNGS), and other methods. This study reviews the latest research on improving the main PRRSV detection methods and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Jinghua Pan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengyi Zeng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Mengmeng Zhao,
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
- Liangzong Huang,
| |
Collapse
|
7
|
Vereecke N, Woźniak A, Pauwels M, Coppens S, Nauwynck H, Cybulski P, Theuns S, Stadejek T. Successful Whole Genome Nanopore Sequencing of Swine Influenza A Virus (swIAV) Directly from Oral Fluids Collected in Polish Pig Herds. Viruses 2023; 15:435. [PMID: 36851649 PMCID: PMC9962634 DOI: 10.3390/v15020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Influenza A virus (IAV) is a single-stranded, negative-sense RNA virus and a common cause of seasonal flu in humans. Its genome comprises eight RNA segments that facilitate reassortment, resulting in a great variety of IAV strains. To study these processes, the genetic code of each segment should be unraveled. Fortunately, new third-generation sequencing approaches allow for cost-efficient sequencing of IAV segments. Sequencing success depends on various factors, including proper sample storage and processing. Hence, this work focused on the effect of storage of oral fluids and swIAV sequencing. Oral fluids (n = 13) from 2017 were stored at -22 °C and later transferred to -80 °C. Other samples (n = 21) were immediately stored at -80 °C. A reverse transcription quantitative PCR (RT-qPCR) pre- and post-storage was conducted to assess IAV viral loads. Next, samples were subjected to two IAV long-read nanopore sequencing methods to evaluate success in this complex matrix. A significant storage-associated loss of swIAV loads was observed. Still, a total of 17 complete and 6 near-complete Polish swIAV genomes were obtained. Genotype T, (H1avN2, seven herds), P (H1N1pdm09, two herds), U (H1avN1, three herds), and A (H1avN1, 1 herd) were circulated on Polish farms. In conclusion, oral fluids can be used for long-read swIAV sequencing when considering appropriate storage and segment amplification protocols, which allows us to monitor swIAV in an animal-friendly and cost-efficient manner.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Aleksandra Woźniak
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | | | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
- PathoSense BV, 2500 Lier, Belgium
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
8
|
Hamim I, Sekine KT, Komatsu K. How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? PLANT MOLECULAR BIOLOGY 2022; 110:469-484. [PMID: 35962900 DOI: 10.1007/s11103-022-01305-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Long-read sequencing technologies are revolutionizing the sequencing and analysis of plant and pathogen genomes and transcriptomes, as well as contributing to emerging areas of interest in plant-pathogen interactions, disease management techniques, and the introduction of new plant varieties or cultivars. Long-read sequencing (LRS) technologies are progressively being implemented to study plants and pathogens of agricultural importance, which have substantial economic effects. The variability and complexity of the genome and transcriptome affect plant growth, development and pathogen responses. Overcoming the limitations of second-generation sequencing, LRS technology has significantly increased the length of a single contiguous read from a few hundred to millions of base pairs. Because of the longer read lengths, new analysis methods and tools have been developed for plant and pathogen genomics and transcriptomics. LRS technologies enable faster, more efficient, and high-throughput ultralong reads, allowing direct sequencing of genomes that would be impossible or difficult to investigate using short-read sequencing approaches. These benefits include genome assembly in repetitive areas, creating more comprehensive and exact genome determinations, assembling full-length transcripts, and detecting DNA and RNA alterations. Furthermore, these technologies allow for the identification of transcriptome diversity, significant structural variation analysis, and direct epigenetic mark detection in plant and pathogen genomic regions. LRS in plant pathology is found efficient for identifying and characterization of effectors in plants as well as known and unknown plant pathogens. In this review, we investigate how these technologies are transforming the landscape of determination and characterization of plant and pathogen genomes and transcriptomes efficiently and accurately. Moreover, we highlight potential areas of interest offered by LRS technologies for future study into plant-pathogen interactions, disease control strategies, and the development of new plant varieties or cultivars.
Collapse
Affiliation(s)
- Islam Hamim
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- International Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ken-Taro Sekine
- Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan.
| |
Collapse
|
9
|
Holicki CM, Bergmann F, Stoek F, Schulz A, Groschup MH, Ziegler U, Sadeghi B. Expedited retrieval of high-quality Usutu virus genomes via Nanopore sequencing with and without target enrichment. Front Microbiol 2022; 13:1044316. [PMID: 36439823 PMCID: PMC9681921 DOI: 10.3389/fmicb.2022.1044316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 10/04/2023] Open
Abstract
Usutu virus (USUV) is a mosquito-borne zoonotic virus and one of the causes of flavivirus encephalitis in birds and occasionally in humans. USUV rapidly disperses in a susceptible host and vector environment, as is the case in South and Central Europe. However, compared to other flaviviruses, USUV has received less research attention and there is therefore limited access to whole-genome sequences and also to in-depth phylogenetic and phylodynamic analyses. To ease future molecular studies, this study compares first- (partial sequencing via Sanger), second- (Illumina), and third-generation (MinION Nanopore) sequencing platforms for USUV. With emphasis on MinION Nanopore sequencing, cDNA-direct and target-enrichment (amplicon-based) sequencing approaches were validated in parallel. The study was based on four samples from succumbed birds commonly collected throughout Germany. The samples were isolated from various sample matrices, organs as well as blood cruor, and included three different USUV lineages. We concluded that depending on the focus of a research project, amplicon-based MinION Nanopore sequencing can be an ideal cost- and time-effective alternative to Illumina in producing optimal genome coverage. It can be implemented for an array of lab- or field-based objectives, including among others: phylodynamic studies and the analysis of viral quasispecies.
Collapse
Affiliation(s)
- Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Felicitas Bergmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Franziska Stoek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ansgar Schulz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
10
|
Chen L, Gao X, Xue W, Yuan S, Liu M, Sun Z. Rapid metagenomic identification of two major swine pathogens with real-time nanopore sequencing. J Virol Methods 2022; 306:114545. [PMID: 35595155 DOI: 10.1016/j.jviromet.2022.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Metagenomic next-generation sequencing (mNGS) is a rapid deep-sequencing diagnostic tool for the unbiased identification of pathogens. In this study, we established a nanopore-sequencing-based mNGS protocol to detect two major viral pathogens of swine, Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine epidemic diarrhea virus (PEDV). Samples were spiked with the serially diluted viruses as standard references to define the specific protocols. The utility of the method was evaluated with key parameters. The limits of detection for PRRSV and PEDV were 2.3 × 102 and 9.0 × 104 copies per reaction, respectively, and good correlations between PCR quantification cycle value and the mapped read count (log value) were observed. Only the nanopore reads could be assembled de novo into nearly full-length of the PRRSV genome, with 99.9% pairwise identity, and 90.0% genome coverage for PEDV. The established protocol was validated in PRRSV-positive clinical samples. The results for PRRSV-positive tissue and serum samples tested with mNGS protocol were 100% concordant with quantitative PCR results. The protocol also recognized infections of single or multiple viruses in a single sample. In conclusion, we have established a nanopore-sequencing-based mNGS protocol that efficiently identifies and characterizes viral pathogen(s) in a variety of clinical sample types.
Collapse
Affiliation(s)
- Lu Chen
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200433, China; Global Innovation China, Boehringer Ingelheim Vetmedica (China) Co., Ltd. Shanghai 210203, China.
| | - Xue Gao
- Boehringer Ingelheim Animal Health (Shanghai) Co., Ltd. Shanghai 210203, China
| | - Wenzhi Xue
- Global Innovation China, Boehringer Ingelheim Vetmedica (China) Co., Ltd. Shanghai 210203, China
| | - Shishan Yuan
- Boehringer Ingelheim (China) Investment Co., Ltd. Shanghai 210203, China
| | - Mingqiu Liu
- Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhi Sun
- Global Innovation China, Boehringer Ingelheim Vetmedica (China) Co., Ltd. Shanghai 210203, China
| |
Collapse
|
11
|
Whole-genome sequencing and genetic characteristics of representative porcine reproductive and respiratory syndrome virus (PRRSV) isolates in Korea. Virol J 2022; 19:66. [PMID: 35410421 PMCID: PMC8996673 DOI: 10.1186/s12985-022-01790-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is a macrophage-tropic arterivirus with extremely high genetic and pathogenic heterogeneity that causes significant economic losses in the swine industry worldwide. PRRSV can be divided into two species [PRRSV1 (European) and PRRSV2 (North American)] and is usually diagnosed and genetically differentiated into several lineages based on the ORF5 gene, which constitutes only 5% of the whole genome. This study was conducted to achieve nonselective amplification and whole-genome sequencing (WGS) based on a simplified sequence-independent, single-primer amplification (SISPA) technique with next-generation sequencing (NGS), and to genetically characterize Korean PRRSV field isolates at the whole genome level. Methods The SISPA-NGS method coupled with a bioinformatics pipeline was utilized to retrieve full length PRRSV genomes of 19 representative Korean PRRSV strains by de novo assembly. Phylogenetic analysis, analysis of the insertion and deletion (INDEL) pattern of nonstructural protein 2 (NSP2), and recombination analysis were conducted. Results Nineteen complete PRRSV genomes were obtained with a high depth of coverage by the SISPA-NGS method. Korean PRRSV1 belonged to the Korean-specific subtype 1A and vaccine-related subtype 1C lineages, showing no evidence of recombination and divergent genetic heterogeneity with conserved NSP2 deletion patterns. Among Korean PRRSV2 isolates, modified live vaccine (MLV)-related lineage 5 viruses, lineage 1 viruses, and nation-specific Korean lineages (KOR A, B and C) could be identified. The NSP2 deletion pattern of the Korean lineages was consistent with that of the MN-184 strain (lineage 1), which indicates the common ancestor and independent evolution of Korean lineages. Multiple recombination signals were detected from Korean-lineage strains isolated in the 2010s, suggesting natural interlineage recombination between circulating KOR C and MLV strains. Interestingly, the Korean strain GGYC45 was identified as a recombinant KOR C and MLV strain harboring the KOR B ORF5 gene and might be the ancestor of currently circulating KOR B strains. Additionally, two novel lineage 1 recombinants of NADC30-like and NADC34-like viruses were detected. Conclusion Genome-wide analysis of Korean PRRSV isolates retrieved by the SISPA-NGS method and de novo assembly, revealed complex evolution and recombination in the field. Therefore, continuous surveillance of PRRSV at the whole genome level should be conducted, and new vaccine strategies for more efficient control of the virus are needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01790-6.
Collapse
|
12
|
Anderson TK, Inderski B, Diel DG, Hause BM, Porter EG, Clement T, Nelson EA, Bai J, Christopher-Hennings J, Gauger PC, Zhang J, Harmon KM, Main R, Lager KM, Faaberg KS. The United States Swine Pathogen Database: integrating veterinary diagnostic laboratory sequence data to monitor emerging pathogens of swine. Database (Oxford) 2021; 2021:6462938. [PMID: 35165687 PMCID: PMC8903347 DOI: 10.1093/database/baab078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Veterinary diagnostic laboratories derive thousands of nucleotide sequences from clinical samples of swine pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A and swine enteric coronaviruses. In addition, next generation sequencing has resulted in the rapid production of full-length genomes. Presently, sequence data are released to diagnostic clients but are not publicly available as data may be associated with sensitive information. However, these data can be used for field-relevant vaccines; determining where and when pathogens are spreading; have relevance to research in molecular and comparative virology; and are a component in pandemic preparedness efforts. We have developed a centralized sequence database that integrates private clinical data using PRRSV data as an exemplar, alongside publicly available genomic information. We implemented the Tripal toolkit, a collection of Drupal modules that are used to manage, visualize and disseminate biological data stored within the Chado database schema. New sequences sourced from diagnostic laboratories contain: genomic information; date of collection; collection location; and a unique identifier. Users can download annotated genomic sequences using a customized search interface that incorporates data mined from published literature; search for similar sequences using BLAST-based tools; and explore annotated reference genomes. Additionally, custom annotation pipelines have determined species, the location of open reading frames and nonstructural proteins and the occurrence of putative frame shifts. Eighteen swine pathogens have been curated. The database provides researchers access to sequences discovered by veterinary diagnosticians, allowing for epidemiological and comparative virology studies. The result will be a better understanding on the emergence of novel swine viruses and how these novel strains are disseminated in the USA and abroad. Database URLhttps://swinepathogendb.org.
Collapse
Affiliation(s)
- Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Blake Inderski
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Diego G Diel
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,Diego G. Diel, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Benjamin M Hause
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Elizabeth G Porter
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Travis Clement
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Eric A Nelson
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Jianfa Bai
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Jane Christopher-Hennings
- Department of Veterinary & Biomedical Sciences, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA.,South Dakota Animal Disease Research & Diagnostic Laboratory, South Dakota State University, 1155 North Campus Drive, Brookings, SD 57007, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Rodger Main
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
13
|
WGS- versus ORF5-Based Typing of PRRSV: A Belgian Case Study. Viruses 2021; 13:v13122419. [PMID: 34960688 PMCID: PMC8707199 DOI: 10.3390/v13122419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most widespread and economically devastating diseases in the swine industry. Typing circulating PRRSV strains by means of sequencing is crucial for developing adequate control strategies. Most genetic studies only target the highly variable open reading frame (ORF) 5, for which an extensive database is available. In this study, we performed whole-genome sequencing (WGS) on a collection of 124 PRRSV-1 positive serum samples that were collected over a 5-year period (2015–2019) in Belgium. Our results show that (nearly) complete PRRSV genomes can be obtained directly from serum samples with a high success rate. Analysis of the coding regions confirmed the exceptionally high genetic diversity, even among Belgian PRRSV-1 strains. To gain more insight into the added value of WGS, we performed phylogenetic cluster analyses on separate ORF datasets as well as on a single, concatenated dataset (CDS) containing all ORFs. A comparison between the CDS and ORF clustering schemes revealed numerous discrepancies. To explain these differences, we performed a large-scale recombination analysis, which allowed us to identify a large number of potential recombination events that were scattered across the genome. As PRRSV does not contain typical recombination hot-spots, typing PRRSV strains based on a single ORF is not recommended. Although the typing accuracy can be improved by including multiple regions, our results show that the full genetic diversity among PRRSV strains can only be captured by analysing (nearly) complete genomes. Finally, we also identified several vaccine-derived recombinant strains, which once more raises the question of the safety of these vaccines.
Collapse
|
14
|
Javaran VJ, Moffett P, Lemoyne P, Xu D, Adkar-Purushothama CR, Fall ML. Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112355. [PMID: 34834718 PMCID: PMC8623739 DOI: 10.3390/plants10112355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 05/30/2023]
Abstract
Among all economically important plant species in the world, grapevine (Vitis vinifera L.) is the most cultivated fruit plant. It has a significant impact on the economies of many countries through wine and fresh and dried fruit production. In recent years, the grape and wine industry has been facing outbreaks of known and emerging viral diseases across the world. Although high-throughput sequencing (HTS) has been used extensively in grapevine virology, the application and potential of third-generation sequencing have not been explored in understanding grapevine viruses and their impact on the grapevine. Nanopore sequencing, a third-generation technology, can be used for the direct sequencing of both RNA and DNA with minimal infrastructure. Compared to other HTS methods, the MinION nanopore platform is faster and more cost-effective and allows for long-read sequencing. Due to the size of the MinION device, it can be easily carried for field viral disease surveillance. This review article discusses grapevine viruses, the principle of third-generation sequencing platforms, and the application of nanopore sequencing technology in grapevine virus detection, virus-plant interactions, as well as the characterization of viral RNA modifications.
Collapse
Affiliation(s)
- Vahid Jalali Javaran
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Pierre Lemoyne
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Dong Xu
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| | - Charith Raj Adkar-Purushothama
- Département de Biochimie, Faculté de Médecine des Sciences de la Santé, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada;
| | - Mamadou Lamine Fall
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada; (V.J.J.); (P.L.); (D.X.)
| |
Collapse
|
15
|
Duan E, Zhang B, Liang X, Jing H, Liu C, Zhang F, Huang J, Su L, Wang J. Effects of glycyrrhizin on the growth cycle and ATPase activity of PRRSV-2-infected MARC-145 cells. Res Vet Sci 2021; 138:30-38. [PMID: 34091227 DOI: 10.1016/j.rvsc.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a viral infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV) and is devastating the swine industry. MARC-145 cells, an African green monkey kidney cell line, are sensitive to PRRSV-2, and are often used for in vitro studies on PRRSV-2. Preliminary research has shown that glycyrrhizin, an important active component extracted from traditional Chinese medicinal licorice, significantly inhibits the proliferation of PRRSV-2 in MARC-145 cells; however, the in-depth molecular mechanism remains unclear. By determining the cell growth cycle, this study found that PRRSV-2 infection first increased the content of G1-phase MARC-145 cells and then decreased the content of G1-phase cells. Moreover, glycyrrhizin affected the role of PRRSV-2 in regulating the cell cycle. Furthermore, PRRSV-2 had the highest proliferation titer in G0/G1-phase MARC-145 cells, and glycyrrhizin reduced the content of PRRSV-2 in synchronized MARC-145 cells. According to the results of ATPase detection, PRRSV-2 infection weakened the Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in MARC-145 cells, while glycyrrhizin significantly enhanced their activities in PRRSV-2-infected MARC-145 cells. The above results provide theoretical support toward clarifying the mechanism by which glycyrrhizin inhibits the proliferation of PRRSV-2 in MARC-145 cells. Moreover, these results offer references for the development and use of glycyrrhizin and the clinical treatment of PRRSV-2 infection.
Collapse
Affiliation(s)
- Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoqing Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| | - Cen Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Fenghua Zhang
- Kaifeng Center for Animal Disease Control and Prevention, Kaifeng, Henan, China
| | - Jin Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Lanli Su
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinrong Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
16
|
Mizutani Y, Uesaka K, Ota A, Calassanzio M, Ratti C, Suzuki T, Fujimori F, Chiba S. De novo Sequencing of Novel Mycoviruses From Fusarium sambucinum: An Attempt on Direct RNA Sequencing of Viral dsRNAs. Front Microbiol 2021; 12:641484. [PMID: 33927702 PMCID: PMC8076516 DOI: 10.3389/fmicb.2021.641484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
An increasing number of viruses are continuously being found in a wide range of organisms, including fungi. Recent studies have revealed a wide viral diversity in microbes and a potential importance of these viruses in the natural environment. Although virus exploration has been accelerated by short-read, high-throughput sequencing (HTS), and viral de novo sequencing is still challenging because of several biological/molecular features such as micro-diversity and secondary structure of RNA genomes. This study conducted de novo sequencing of multiple double-stranded (ds) RNA (dsRNA) elements that were obtained from fungal viruses infecting two Fusarium sambucinum strains, FA1837 and FA2242, using conventional HTS and long-read direct RNA sequencing (DRS). De novo assembly of the read data from both technologies generated near-entire genomic sequence of the viruses, and the sequence homology search and phylogenetic analysis suggested that these represented novel species of the Hypoviridae, Totiviridae, and Mitoviridae families. However, the DRS-based consensus sequences contained numerous indel errors that differed from the HTS consensus sequences, and these errors hampered accurate open reading frame (ORF) prediction. Although with its present performance, the use of DRS is premature to determine viral genome sequences, the DRS-mediated sequencing shows great potential as a user-friendly platform for a one-shot, whole-genome sequencing of RNA viruses due to its long-reading ability and relative structure-tolerant nature.
Collapse
Affiliation(s)
- Yukiyoshi Mizutani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Ayane Ota
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Matteo Calassanzio
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Fumihiro Fujimori
- Graduate School of Humanities and Life Sciences, Tokyo Kasei University, Itabashi, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Tan S, Dvorak CMT, Murtaugh MP. Characterization of Emerging Swine Viral Diseases through Oxford Nanopore Sequencing Using Senecavirus A as a Model. Viruses 2020; 12:v12101136. [PMID: 33036361 PMCID: PMC7600144 DOI: 10.3390/v12101136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging viral infectious diseases present a major threat to the global swine industry. Since 2015, Senecavirus A (SVA) has been identified as a cause of vesicular disease in different countries and is considered an emerging disease. Despite the growing concern about SVA, there is a lack of preventive and diagnostic strategies, which is also a problem for all emerging infectious diseases. Using SVA as a model, we demonstrated that Oxford Nanopore MinION sequencing could be used as a robust tool for the investigation and surveillance of emerging viral diseases. Our results identified that MinION sequencing allowed for rapid, unbiased pathogen detection at the species and strain level for clinical cases. SVA whole genome sequences were generated using both direct RNA sequencing and PCR-cDNA sequencing methods, with an optimized consensus accuracy of 94% and 99%, respectively. The advantages of direct RNA sequencing lie in its shorter turnaround time, higher analytical sensitivity and its quantitative relationship between input RNA and output sequencing reads, while PCR-cDNA sequencing excelled at creating highly accurate sequences. This study developed whole genome sequencing methods to facilitate the control of SVA and provide a reference for the timely detection and prevention of other emerging infectious diseases.
Collapse
|
18
|
Wang Y, Yim-Im W, Porter E, Lu N, Anderson J, Noll L, Fang Y, Zhang J, Bai J. Development of a bead-based assay for detection and differentiation of field strains and four vaccine strains of type 2 porcine reproductive and respiratory syndrome virus (PRRSV-2) in the USA. Transbound Emerg Dis 2020; 68:1414-1423. [PMID: 32816334 DOI: 10.1111/tbed.13808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains one of the most economically devastating diseases in swine population in the United States of America. Due to high mutation rate of the PRRS virus (PRRSV) genome, it is difficult to develop an accurate diagnostic assay with high strain coverage. Differentiation of field strains from the four vaccines that have been used in the USA, namely Ingelvac PRRS MLV, Ingelvac ATP, Fostera PRRS and Prime Pac PRRS, adds an additional challenge. It is difficult to use current real-time PCR systems to detect and differentiate the field strains from the vaccine strains. Luminex xTAG technology allows us to detect more molecular targets in a single reaction with a cost similar to a single real-time PCR reaction. By analysing all available 678 type 2 PRRSV (PRRSV-2) complete genome sequences, including the 4 vaccine strains, two pairs of detection primers were designed targeting the conserved regions of ORF4-ORF7, with strain coverage of 98.8% (670/678) based on in silico analysis. The virus strains sharing ≥98% identity of the complete genomes with the vaccine strains were considered vaccine or vaccine-like strains. One pair of primers for each vaccine strain were designed targeting the nsp2 region. In silico analysis showed the assay matched 94.7% (54/57) of Ingelvac PRRS® MLV (MLV) strain and the MLV-like strains, and 100% of the other three vaccine strains. Analytical sensitivity of the Luminex assay was one to two logs lower than that of the reverse transcription real-time PCR assay. Evaluated with 417 PRRSV-2 positive clinical samples, 95% were detected by the Luminex assay. Compared to ORF5 sequencing results, the Luminex assay detected 92.4% (73/79) of MLV strains, 78.3% (18/23) of Fostera strains and 50% (2/4) of ATP strains. None of the 472 samples were the Prime Pac strain tested by either ORF5 sequencing or the Luminex assay.
Collapse
Affiliation(s)
- Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wannarat Yim-Im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Elizabeth Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Bioinformatics Center, Kansas State University, Manhattan, KS, USA
| | - Joe Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA
| | - Ying Fang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, USA.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
19
|
Gagnon CA, Lalonde C, Provost C. Porcine reproductive and respiratory syndrome virus whole-genome sequencing efficacy with field clinical samples using a poly(A)-tail viral genome purification method. J Vet Diagn Invest 2020; 33:216-226. [PMID: 32856560 DOI: 10.1177/1040638720952411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genomic surveillance of porcine reproductive and respiratory syndrome virus (PRRSV) is based on sequencing of the ORF5 gene of the virus, which covers only 4% of the entire viral genome. It is expected that PRRSV whole-genome sequencing (WGS) will improve PRRSV genomic data and allow better understanding of clinical discrepancies observed in the field when using ORF5 sequencing. Our main objective was to implement an efficient method for WGS of PRRSV from clinical samples. The viral genome was purified using a poly(A)-tail viral genome purification method and sequenced using Illumina technology. We tested 149 PRRSV-positive samples: 80 sera, 33 lungs, 33 pools of tissues, 2 oral fluids, and 1 processing fluid (i.e., castration liquid). Overall, WGS of 67.1% of PRRSV-positive cases was successful. The viral load, in particular for tissues, had a major impact on the PRRSV WGS success rate. Serum was the most efficient type of sample to conduct PRRSV WGS poly(A)-tail assays, with a success rate of 76.3%, and this result can be explained by improved sequencing reads dispersion matching throughout the entire viral genome. WGS was unsuccessful for all pools of tissue and lung samples with Cq values > 26.5, whereas it could still be successful with sera at Cq ≤ 34.1. Evaluation of results of highly qualified personnel confirmed that laboratory skills could affect PRRSV WGS efficiency. Oral fluid samples seem very promising and merit further investigation because, with only 2 samples of low viral load (Cq = 28.8, 32.8), PRRSV WGS was successful.
Collapse
Affiliation(s)
- Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center and Molecular Diagnostic Laboratory of the Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Christian Lalonde
- Swine and Poultry Infectious Diseases Research Center, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Chantale Provost
- Swine and Poultry Infectious Diseases Research Center and Molecular Diagnostic Laboratory of the Service de diagnostic, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
20
|
Quick assessment of influenza a virus infectivity with a long-range reverse-transcription quantitative polymerase chain reaction assay. BMC Infect Dis 2020; 20:585. [PMID: 32762666 PMCID: PMC7407439 DOI: 10.1186/s12879-020-05317-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The polymerase chain reaction (PCR) is commonly used to detect viral pathogens because of its high sensitivity and specificity. However, conventional PCR methods cannot determine virus infectivity. Virus infectivity is conventionally examined with methods such as the plaque assay, even though such assays require several days. Long-range reverse-transcription quantitative PCR (RT-qPCR) has previously been suggested for the rapid assessment of RNA virus infectivity where the loss of infectivity is attributable to genomic fragmentation. METHODS IAV was irradiated with 253.7 nm ultraviolet (UV) rays to induce genomic strand breaks that were confirmed by a full-length RT-PCR assay. The IAV was then subjected to plaque assay, conventional RT-qPCR and long-range RT-qPCR to examine the relationship between infectious titer and copy number. A simple linear regression analysis was performed to examine the correlation between the results of these assays. RESULTS A long-range RT-qPCR assay was developed and validated for influenza A virus (IAV). Although only a few minutes of UV irradiation was required to completely inactivate IAV, genomic RNA remained detectable by the conventional RT-qPCR and the full-length RT-PCR for NS of viral genome following inactivation. A long-range RT-qPCR assay was then designed using RT-priming at the 3' termini of each genomic segment and subsequent qPCR of the 5' regions. UV-mediated IAV inactivation was successfully analyzed by the long-range RT-qPCR assay especially when targeting PA of the viral genome. This was also supported by the regression analysis that the long-range RT-qPCR is highly correlated with plaque assay (Adjusted R2 = 0.931, P = 0.000066). CONCLUSIONS This study suggests that IAV infectivity can be predicted without the infectivity assays. The rapid detection of pathogenic IAV has, therefore, been achieved with this sensing technology.
Collapse
|
21
|
Grädel C, Terrazos Miani MA, Baumann C, Barbani MT, Neuenschwander S, Leib SL, Suter-Riniker F, Ramette A. Whole-Genome Sequencing of Human Enteroviruses from Clinical Samples by Nanopore Direct RNA Sequencing. Viruses 2020; 12:v12080841. [PMID: 32752120 PMCID: PMC7472277 DOI: 10.3390/v12080841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Enteroviruses are small RNA viruses that affect millions of people each year by causing an important burden of disease with a broad spectrum of symptoms. In routine diagnostic laboratories, enteroviruses are identified by PCR-based methods, often combined with partial sequencing for genotyping. In this proof-of-principle study, we assessed direct RNA sequencing (DRS) using nanopore sequencing technology for fast whole-genome sequencing of viruses directly from clinical samples. The approach was complemented by sequencing the corresponding viral cDNA via Illumina MiSeq sequencing. DRS of total RNA extracted from three different enterovirus-positive stool samples produced long RNA fragments, covering between 59% and 99.6% of the most similar reference genome sequences. The identification of the enterovirus sequences in the samples was confirmed by short-read cDNA sequencing. Sequence identity between DRS and Illumina MiSeq enterovirus consensus sequences ranged between 94% and 97%. Here, we show that nanopore DRS can be used to correctly identify enterovirus genotypes from patient stool samples with high viral load and that the approach also provides rich metatranscriptomic information on sample composition for all life domains.
Collapse
Affiliation(s)
- Carole Grädel
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Miguel A. Terrazos Miani
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
| | - Christian Baumann
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
| | - Maria Teresa Barbani
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
| | - Stefan Neuenschwander
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
| | - Franziska Suter-Riniker
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland; (C.G.); (M.A.T.M.); (C.B.); (M.T.B.); (S.N.); (S.L.L.); (F.S.-R.)
- Correspondence: ; Tel.: +41-31-632-9540
| |
Collapse
|
22
|
Determining the Suitability of MinION's Direct RNA and DNA Amplicon Sequencing for Viral Subtype Identification. Viruses 2020; 12:v12080801. [PMID: 32722480 PMCID: PMC7472323 DOI: 10.3390/v12080801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
The MinION sequencer is increasingly being used for the detection and outbreak surveillance of pathogens due to its rapid throughput. For RNA viruses, MinION's new direct RNA sequencing is the next significant development. Direct RNA sequencing studies are currently limited and comparisons of its diagnostic performance relative to different DNA sequencing approaches are lacking as a result. We sought to address this gap and sequenced six subtypes from the mycovirus CHV-1 using MinION's direct RNA sequencing and DNA sequencing based on a targeted viral amplicon. Reads from both techniques could correctly identify viral presence and species using BLAST, though direct RNA reads were more frequently misassigned to closely related CHV species. De novo consensus sequences were error prone but suitable for viral species identification. However, subtype identification was less accurate from both reads and consensus sequences. This is due to the high sequencing error rate and the limited sequence divergence between some CHV-1 subtypes. Importantly, neither RNA nor amplicon sequencing reads could be used to obtain reliable intra-host variants. Overall, both sequencing techniques were suitable for virus detection, though limitations are present due to the error rate of MinION reads.
Collapse
|