1
|
Zhang J, Chen S, Sun X, Chen S, Cheng Q. Phage Therapy: A Promising Treatment Strategy against Infections Caused by Multidrug-resistant Klebsiella pneumoniae. Curr Pharm Des 2025; 31:1007-1019. [PMID: 39757682 DOI: 10.2174/0113816128343976241117183624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025]
Abstract
Klebsiella pneumoniae (KP) is a common and highly pathogenic pathogen, which often causes several serious infections in humans. The rampant and inappropriate use of broad-spectrum antibiotics has fueled a worrisome surge in Multidrug Resistance (MDR) among the strains of K. pneumoniae, which has significantly boosted the risk and complexity of nosocomial infection transmission in clinical settings. Consequently, this situation presents a substantial challenge to the efficacy of anti-infective treatments, making the development of new and innovative therapeutic approaches important. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their derived products are now being considered as promising alternatives or adjuncts to antimicrobial therapies for treating bacterial infections in humans, which exhibit a remarkable safety profile and precise host specificity. Numerous studies have also unequivocally demonstrated the remarkable potential of phages in effectively combating MDR K. pneumoniae infections both in vitro and in vivo. These studies have explored various approaches to K. pneumoniae phages, such as phage cocktails, phage-derived enzymes, and the synergistic utilization of phages and antibiotics. Therefore, phage therapy is old but not obsolete, particularly in light of the escalating problem of antimicrobial-resistant K. pneumoniae infections. Here, we have presented a comprehensive summary of the current knowledge on phage therapy for K. pneumoniae infections, including phage distribution, in vitro characterization of phages, in vivo investigations, and cases of clinical study. This review highlights the rapid advancements in phage therapy for K. pneumoniae, offering a promising avenue for combating this global public health threat.
Collapse
Affiliation(s)
- Jinghan Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyue Chen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Xiaoxiao Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
- Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| |
Collapse
|
2
|
Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024; 16:1879. [PMID: 39772189 PMCID: PMC11680127 DOI: 10.3390/v16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.
Collapse
Affiliation(s)
- Ivan M. Pchelin
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Andrei V. Smolensky
- Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus;
| | - Daniil V. Azarov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| | - Artemiy E. Goncharov
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia; (D.V.A.); (A.E.G.)
| |
Collapse
|
3
|
Wan X, Skurnik M. Multidisciplinary Methods for Screening Toxic Proteins from Phages and Their Potential Molecular Targets. Methods Mol Biol 2024; 2793:237-256. [PMID: 38526734 DOI: 10.1007/978-1-0716-3798-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This chapter presents a comprehensive methodology for the identification, characterization, and functional analyses of potentially toxic hypothetical proteins of unknown function (toxHPUFs) in phages. The methods begin with in vivo toxicity verification of toxHPUFs in bacterial hosts, utilizing conventional drop tests and following growth curves. Computational methods for structural and functional predictions of toxHPUFs are outlined, incorporating the use of tools such as Phyre2, HHpred, and AlphaFold2. To ascertain potential targets, a comparative genomic approach is described using bioinformatics toolkits for sequence alignment and functional annotation. Moreover, steps are provided to predict protein-protein interactions and visualizing these using PyMOL. The culmination of these methods equips researchers with an effective pipeline to identify and analyze toxHPUFs and their potential targets, laying the groundwork for future experimental confirmations.
Collapse
Affiliation(s)
- Xing Wan
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Mohammadi M, Saffari M, Siadat SD. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol (Praha) 2023; 68:357-368. [PMID: 37036571 DOI: 10.1007/s12223-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Klebsiella spp. is a commensal gram-negative bacterium and a member of the human microbiota. It is the leading cause of various hospital-acquired infections. The occurrence of multi-drug drug resistance and carbapenemase-producing strains of Klebsiella pneumoniae producing weighty contaminations is growing, and Klebsiella oxytoca is an arising bacterium. Alternative approaches to tackle contaminations led by these microorganisms are necessary as strains enhance opposing to last-stage antibiotics in the way that Colistin. The lytic bacteriophages are viruses that infect and rapidly eradicate bacterial cells and are strain-specific to their hosts. They and their proteins are immediately deliberate as opportunities or adjuncts to antibiotic therapy. There are several reports in vitro and in vivo form that proved the potential use of lytic phages to combat superbug stains of K. pneumoniae. Various reports dedicated that the phage area can be returned to the elimination of multi-drug resistance and carbapenemase resistance isolates of K. pneumoniae. This review compiles our current information on phages of Klebsiella spp. and highlights technological and biological issues related to the evolution of phage-based therapies targeting these bacterial hosts.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Saffari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Fayez MS, Hakim TA, Zaki BM, Makky S, Abdelmoteleb M, Essam K, Safwat A, Abdelsattar AS, El-Shibiny A. Morphological, biological, and genomic characterization of Klebsiella pneumoniae phage vB_Kpn_ZC2. Virol J 2023; 20:86. [PMID: 37138257 PMCID: PMC10158348 DOI: 10.1186/s12985-023-02034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Bacteriophages (phages) are one of the most promising alternatives to traditional antibiotic therapies, especially against multidrug-resistant bacteria. Klebsiella pneumoniae is considered to be an opportunistic pathogen that can cause life-threatening infections. Thus, this study aims at the characterization of a novel isolated phage vB_Kpn_ZC2 (ZCKP2, for short). METHODS The phage ZCKP2 was isolated from sewage water by using the clinical isolate KP/08 as a host strain. The isolated bacteriophage was purified and amplified, followed by testing of its molecular weight using Pulse-Field Gel Electrophoresis (PFGE), transmission electron microscopy, antibacterial activity against a panel of other Klebsiella pneumoniae hosts, stability studies, and whole genome sequencing. RESULTS Phage ZCKP2 belongs morphologically to siphoviruses as indicated from the Transmission Electron Microscopy microgram. The Pulsed Field Gel Electrophoresis and the phage sequencing estimated the phage genome size of 48.2 kbp. Moreover, the absence of lysogeny-related genes, antibiotic resistance genes, and virulence genes in the annotated genome suggests that phage ZCKP2 is safe for therapeutic use. Genome-based taxonomic analysis indicates that phage ZCKP2 represents a new family that has not been formally rated yet. In addition, phage ZCKP2 preserved high stability at different temperatures and pH values (-20 - 70 °C and pH 4 - 9). For the antibacterial activity, phage ZCKP2 maintained consistent clear zones on KP/08 bacteria along with other hosts, in addition to effective bacterial killing over time at different MOIs (0.1, 1, and 10). Also, the genome annotation predicted antibacterial lytic enzymes. Furthermore, the topology of class II holins was predicted in some putative proteins with dual transmembrane domains that contribute significantly to antibacterial activity. Phage ZCKP2 characterization demonstrates safety and efficiency against multidrug-resistant K. pneumoniae, hence ZCKP2 is a good candidate for further in vivo and phage therapy clinical applications.
Collapse
Affiliation(s)
- Mohamed S. Fayez
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Toka A. Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Bishoy Maher Zaki
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787 Egypt
| | - Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Mohamed Abdelmoteleb
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Kareem Essam
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza, 12578 Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, 45511 Egypt
| |
Collapse
|
6
|
Li L, Wu Y, Ma D, Zhou Y, Wang L, Han K, Cao Y, Wang X. Isolation and characterization of a novel Escherichia coli phage Kayfunavirus ZH4. Virus Genes 2022; 58:448-457. [PMID: 35716226 DOI: 10.1007/s11262-022-01916-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
Escherichia coli, a gram-negative bacterium, was generally considered conditional pathogenic bacteria and the proportion of bacteria resistant to commonly used specified antibacterial drugs exceeded 50%. Phage therapeutic application has been revitalized since antibiotic resistance in bacteria was increasing. Compared with antibiotics, phage is the virus specific to bacterial hosts. However, further understanding of phage-host interactions is required. In this study, a novel phage specific to a E. coli strain, named as phage Kayfunavirus ZH4, was isolated and characterized. Transmission electron microscopy showed that phage ZH4 belongs to the family Autographiviridae. The whole-genome analysis showed that the length of phage ZH4 genome was 39,496 bp with 49 coding domain sequence (CDS) and no tRNA was detected. Comparative genome and phylogenetic analysis demonstrated that phage ZH4 was highly similar to phages belonging to the genus Kayfunavirus. Moreover, the highest average nucleotide identity (ANI) values of phage ZH4 with all the known phages was 0.86, suggesting that ZH4 was a relatively novel phage. Temperature and pH stability tests showed that phage ZH4 was stable from 4° to 50 °C and pH range from 3 to 11. Host range of phage ZH4 showed that there were only 2 out of 17 strains lysed by phage ZH4. Taken together, phage ZH4 was considered as a novel phage with the potential for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lei Li
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Yuxing Wu
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Dongxin Ma
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Yuqing Zhou
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, 530004, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
7
|
Screening of Bacteriophage Encoded Toxic Proteins with a Next Generation Sequencing-Based Assay. Viruses 2021; 13:v13050750. [PMID: 33923360 PMCID: PMC8145870 DOI: 10.3390/v13050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteriophage vB_EcoM_fHy-Eco03 (fHy-Eco03 for short) was isolated from a sewage sample based on its ability to infect an Escherichia coli clinical blood culture isolate. Altogether, 32 genes encoding hypothetical proteins of unknown function (HPUFs) were identified from the genomic sequence of fHy-Eco03. The HPUFs were screened for toxic properties (toxHPUFs) with a novel, Next Generation Sequencing (NGS)-based approach. This approach identifies toxHPUF-encoding genes through comparison of gene-specific read coverages in DNA from pooled ligation mixtures before electroporation and pooled transformants after electroporation. The performance and reliability of the NGS screening assay was compared with a plating efficiency-based method, and both methods identified the fHy-Eco03 gene g05 product as toxic. While the outcomes of the two screenings were highly similar, the NGS screening assay outperformed the plating efficiency assay in both reliability and efficiency. The NGS screening assay can be used as a high throughput method in the search for new phage-inspired antimicrobial molecules.
Collapse
|
8
|
Sofy AR, El-Dougdoug NK, Refaey EE, Dawoud RA, Hmed AA. Characterization and Full Genome Sequence of Novel KPP-5 Lytic Phage against Klebsiella pneumoniae Responsible for Recalcitrant Infection. Biomedicines 2021; 9:342. [PMID: 33800632 PMCID: PMC8066614 DOI: 10.3390/biomedicines9040342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Klebsiella pneumoniae is a hazardous opportunistic pathogen that is involved in many serious human diseases and is considered to be an important foodborne pathogen found in many food types. Multidrug resistance (MDR) K. pneumoniae strains have recently spread and increased, making bacteriophage therapy an effective alternative to multiple drug-resistant pathogens. As a consequence, this research was conducted to describe the genome and basic biological characteristics of a novel phage capable of lysing MDR K. pneumoniae isolated from food samples in Egypt. The host range revealed that KPP-5 phage had potent lytic activity and was able to infect all selected MDR K. pneumoniae strains from different sources. Electron microscopy images showed that KPP-5 lytic phage was a podovirus morphology. The one-step growth curve exhibited that KPP-5 phage had a relatively short latent period of 25 min, and the burst size was about 236 PFU/infected cells. In addition, KPP-5 phage showed high stability at different temperatures and pH levels. KPP-5 phage has a linear dsDNA genome with a length of 38,245 bp with a GC content of 50.8% and 40 predicted open reading frames (ORFs). Comparative genomics and phylogenetic analyses showed that KPP-5 is most closely associated with the Teetrevirus genus in the Autographviridae family. No tRNA genes have been identified in the KPP-5 phage genome. In addition, phage-borne virulence genes or drug resistance genes were not present, suggesting that KPP-5 could be used safely as a phage biocontrol agent.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
- Department of Biology, Faculty of Science, Jazan University, Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| |
Collapse
|
9
|
Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr Opin Biotechnol 2020; 68:1-7. [PMID: 33007632 DOI: 10.1016/j.copbio.2020.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023]
Abstract
The deeply intertwined evolutionary history between bacteriophages and bacteria has endowed phages with highly specific mechanisms to hijack bacterial cell metabolism for their propagation. Here, we present a comprehensive, phage-driven strategy to reveal novel antibacterial targets by the exploitation of phage-bacteria interactions. This strategy will enable the design of small molecules, which mimic the inhibitory phage proteins, and allow the subsequent hit-to-lead development of these antimicrobial compounds. This proposed small molecule approach is distinct from phage therapy and phage enzyme-based antimicrobials and may produce a more sustainable generation of new antibiotics that exploit novel bacterial targets and act in a pathogen-specific manner.
Collapse
|