1
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
2
|
Rex EA, Seo D, Chappidi S, Pinkham C, Brito Oliveira S, Embry A, Heisler D, Liu Y, Munir M, Luger K, Alto NM, da Fonseca FG, Orchard R, Hancks DC, Gammon DB. FEAR antiviral response pathway is independent of interferons and countered by poxvirus proteins. Nat Microbiol 2024; 9:988-1006. [PMID: 38538832 PMCID: PMC11331548 DOI: 10.1038/s41564-024-01646-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
The human facilitates chromatin transcription (FACT) complex is a chromatin remodeller composed of human suppressor of Ty 16 homologue (hSpt16) and structure-specific recognition protein-1 subunits that regulates cellular gene expression. Whether FACT regulates host responses to infection remained unclear. We identify a FACT-mediated, interferon-independent, antiviral pathway that restricts poxvirus replication. Cell culture and bioinformatics approaches suggest that early viral gene expression triggers nuclear accumulation of SUMOylated hSpt16 subunits required for the expression of E26 transformation-specific sequence-1 (ETS-1)-a transcription factor that activates virus restriction programs. However, biochemical studies show that poxvirus-encoded A51R proteins block ETS-1 expression by outcompeting structure-specific recognition protein-1 binding to SUMOylated hSpt16 and by tethering SUMOylated hSpt16 to microtubules. Furthermore, A51R antagonism of FACT enhances poxvirus replication in human cells and virulence in mice. Finally, we show that FACT also restricts rhabdoviruses, flaviviruses and orthomyxoviruses, suggesting broad roles for FACT in antiviral immunity. Our study reveals the FACT-ETS-1 antiviral response (FEAR) pathway to be critical for eukaryotic antiviral immunity and describes a unique mechanism of viral immune evasion.
Collapse
Affiliation(s)
- Emily A Rex
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dahee Seo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chelsea Pinkham
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sabrynna Brito Oliveira
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Moiz Munir
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Orchard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Magalhães VG, Lukassen S, Drechsler M, Loske J, Burkart SS, Wüst S, Jacobsen EM, Röhmel J, Mall MA, Debatin KM, Eils R, Autenrieth S, Janda A, Lehmann I, Binder M. Immune-epithelial cell cross-talk enhances antiviral responsiveness to SARS-CoV-2 in children. EMBO Rep 2023; 24:e57912. [PMID: 37818799 DOI: 10.15252/embr.202357912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The risk of developing severe COVID-19 rises dramatically with age. Schoolchildren are significantly less likely than older people to die from SARS-CoV-2 infection, but the molecular mechanisms underlying this age-dependence are unknown. In primary infections, innate immunity is critical due to the lack of immune memory. Children, in particular, have a significantly stronger interferon response due to a primed state of their airway epithelium. In single-cell transcriptomes of nasal turbinates, we find increased frequencies of immune cells and stronger cytokine-mediated interactions with epithelial cells, resulting in increased epithelial expression of viral sensors (RIG-I, MDA5) via IRF1. In vitro, adolescent peripheral blood mononuclear cells produce more cytokines, priming A549 cells for stronger interferon responses to SARS-CoV-2. Taken together, our findings suggest that increased numbers of immune cells in the airways of children and enhanced cytokine-based interactions with epithelial cells tune the setpoint of the epithelial antiviral system. Our findings shed light on the molecular basis of children's remarkable resistance to COVID-19 and may suggest a novel concept for immunoprophylactic treatments.
Collapse
Affiliation(s)
- Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Drechsler
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva-Maria Jacobsen
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
- Health Data Science Unit, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stella Autenrieth
- Research Group "Dendritic Cells in Infection and Cancer" (F171), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Aleš Janda
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm University, Ulm, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Burkart SS, Schweinoch D, Frankish J, Sparn C, Wüst S, Urban C, Merlo M, Magalhães VG, Piras A, Pichlmair A, Willemsen J, Kaderali L, Binder M. High-resolution kinetic characterization of the RIG-I-signaling pathway and the antiviral response. Life Sci Alliance 2023; 6:e202302059. [PMID: 37558422 PMCID: PMC10412806 DOI: 10.26508/lsa.202302059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
RIG-I recognizes viral dsRNA and activates a cell-autonomous antiviral response. Upon stimulation, it triggers a signaling cascade leading to the production of type I and III IFNs. IFNs are secreted and signal to elicit the expression of IFN-stimulated genes, establishing an antiviral state of the cell. The topology of this pathway has been studied intensively, however, its exact dynamics are less understood. Here, we employed electroporation to synchronously activate RIG-I, enabling us to characterize cell-intrinsic innate immune signaling at a high temporal resolution. Employing IFNAR1/IFNLR-deficient cells, we could differentiate primary RIG-I signaling from secondary signaling downstream of the IFN receptors. Based on these data, we developed a comprehensive mathematical model capable of simulating signaling downstream of dsRNA recognition by RIG-I and the feedback and signal amplification by IFN. We further investigated the impact of viral antagonists on signaling dynamics. Our work provides a comprehensive insight into the signaling events that occur early upon virus infection and opens new avenues to study and disentangle the complexity of the host-virus interface.
Collapse
Affiliation(s)
- Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Darius Schweinoch
- Institute of Bioinformatics & Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Jamie Frankish
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Carola Sparn
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Marta Merlo
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Antonio Piras
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics & Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Ye S, Tan C, Yang X, Wang J, Li Q, Xu L, Wang Z, Mao J, Wang J, Cheng K, Chen A, Zhou P, Li S. Transcriptome Analysis of Retinoic Acid-Inducible Gene I Overexpression Reveals the Potential Genes for Autophagy-Related Negative Regulation. Cells 2022; 11:2009. [PMID: 35805093 PMCID: PMC9265583 DOI: 10.3390/cells11132009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) serves as an essential viral RNA sensor for innate immune. The activation of the RIG-I-like receptors (RLRs) pathway triggers many regulations for the outcome of type I interferon, including ubiquitination, dephosphorylation, ISGylation, and autophagy. However, the autophagy-related regulation of RIG-I is still not fully understood. To investigate the potentially unknown genes related to autophagy-related regulation of RIG-I, we firstly confirm the induction of autophagy derived by overexpression of RIG-I. Furthermore, the autophagy inducer and inhibitor drugs were used in different assays. The results showed autophagy could control the activation of RLRs pathway and expression of exogenous RIG-I. In addition, we carried out the transcriptome analysis of overexpression of RIG-I in vitro. Differentially expressed genes (DEGs) in GO and KEGG signaling pathways enrichment provided a newly complex network. Finally, the validation of qPCR indicated that the DEGs PTPN22, PRKN, OTUD7B, and SIRT2 were correlated to the negative regulation of excessive expression of RIG-I. Taken together, our study contributed new insights into a more comprehensive understanding of the regulation of excessive expression of RIG-I. It provided the potential candidate genes for autophagy-related negative regulation for further investigation.
Collapse
Affiliation(s)
- Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Chen Tan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China;
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, 4000 Liege, Belgium
| | - Xiaoyun Yang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526000, China;
| | - Ji Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Qi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jianwei Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Kui Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Aolei Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| |
Collapse
|
6
|
Zander DY, Burkart SS, Wüst S, Magalhães VG, Binder M. Cooperative effects of RIG-I-like receptor signaling and IRF1 on DNA damage-induced cell death. Cell Death Dis 2022; 13:364. [PMID: 35436994 PMCID: PMC9016077 DOI: 10.1038/s41419-022-04797-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
Abstract
Properly responding to DNA damage is vital for eukaryotic cells, including the induction of DNA repair, growth arrest and, as a last resort to prevent neoplastic transformation, cell death. Besides being crucial for ensuring homeostasis, the same pathways and mechanisms are at the basis of chemoradiotherapy in cancer treatment, which involves therapeutic induction of DNA damage by chemical or physical (radiological) measures. Apart from typical DNA damage response mediators, the relevance of cell-intrinsic antiviral signaling pathways in response to DNA breaks has recently emerged. Originally known for combatting viruses via expression of antiviral factors including interferons (IFNs) and establishing of an antiviral state, RIG-I-like receptors (RLRs) were found to be critical for adequate induction of cell death upon the introduction of DNA double-strand breaks. We here show that presence of IRF3 is crucial in this process, most likely through direct activation of pro-apoptotic factors rather than transcriptional induction of canonical downstream components, such as IFNs. Investigating genes reported to be involved in both DNA damage response and antiviral signaling, we demonstrate that IRF1 is an obligatory factor for DNA damage-induced cell death. Interestingly, its regulation does not require activation of RLR signaling, but rather sensing of DNA double-strand breaks by ATM and ATR. Hence, even though independently regulated, both RLR signaling and IRF1 are essential for full-fledged induction/execution of DNA damage-mediated cell death programs. Our results not only support more broadly developing IRF1 as a biomarker predictive for the effectiveness of chemoradiotherapy, but also suggest investigating a combined pharmacological stimulation of RLR and IRF1 signaling as a potential adjuvant regimen in tumor therapy.
Collapse
Affiliation(s)
- David Y Zander
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg University, Heidelberg, Germany
| | - Sandy S Burkart
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir G Magalhães
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Wüst S, Schad P, Burkart S, Binder M. Comparative Analysis of Six IRF Family Members in Alveolar Epithelial Cell-Intrinsic Antiviral Responses. Cells 2021; 10:2600. [PMID: 34685580 PMCID: PMC8533862 DOI: 10.3390/cells10102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Host cell-intrinsic antiviral responses are largely mediated by pattern-recognition receptor (PRR) signaling and the interferon (IFN) system. The IFN regulatory factor (IRF) family of transcription factors takes up a central role in transcriptional regulation of antiviral innate immunity. IRF3 and IRF7 are known to be key players downstream of PRRs mediating the induction of type I and III IFNs. IFN signaling then requires IRF9 for the expression of the full array of interferon stimulated genes (ISGs) ultimately defining the antiviral state of the cell. Other members of the IRF family clearly play a role in mediating or modulating IFN responses, such as IRF1, IRF2 or IRF5, however their relative contribution to mounting a functional antiviral response is much less understood. In this study, we systematically and comparatively assessed the impact of six members of the IRF family on antiviral signaling in alveolar epithelial cells. We generated functional knockouts of IRF1, -2, -3, -5, -7, and -9 in A549 cells, and measured their impact on the expression of IFNs and further cytokines, ISGs and other IRFs, as well as on viral replication. Our results confirmed the vital importance of IRF3 and IRF9 in establishing an antiviral state, whereas IRF1, 5 and 7 were largely dispensable. The previously described inhibitory activity of IRF2 could not be observed in our experimental system.
Collapse
Affiliation(s)
- Sandra Wüst
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
| | - Paulina Schad
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Sandy Burkart
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Viral Infection and the Innate Antiviral Response”, Division F170, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (S.W.); (P.S.); (S.B.)
| |
Collapse
|
8
|
König R, Münk C. Special Issue: "Innate Immune Sensing of Viruses and Viral Evasion". Viruses 2021; 13:v13040567. [PMID: 33810623 PMCID: PMC8066569 DOI: 10.3390/v13040567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this Special Issue, a wide variety of original and review articles provide a timely overview of how viruses are recognized by and evade from cellular innate immunity, which represents the first line of defense against viruses [...].
Collapse
Affiliation(s)
- Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
- Correspondence: (R.K.); (C.M.)
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (R.K.); (C.M.)
| |
Collapse
|