1
|
Tu NQ, Richetta C, Putzu F, Delelis O, Ahmed K, Masand VH, Schobert R, Tramontano E, Corona A, Biersack B. Identification of HIV-1 Reverse Transcriptase-Associated Ribonuclease H Inhibitors Based on 2-Hydroxy-1,4-naphthoquinone Mannich Bases. Molecules 2025; 30:495. [PMID: 39942599 PMCID: PMC11820915 DOI: 10.3390/molecules30030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
There is a strong demand for new and efficient antiviral compounds. A series of 2-hydroxy-1,4-naphthoquinone Mannich bases were screened for their HIV-1-RNase H inhibitory activity. An HIV-1-RNase H assay was used to study the RNase H inhibition by the test compounds. Docking of active derivatives into the active site of the enzyme was carried out. Compounds 1e and 2k showed distinctly higher HIV-1-RNase H inhibitory activity (IC50 = 2.8-3.1 µM) than the known inhibitors RDS1759 and compound 13. The binding mode and possible interactions of 1e and 2k with the HIV-1-RNase H active site were determined using molecular docking, which led to the identification of salient and concealed pharmacophoric features of these molecules. The docking analysis revealed that there are significant differences in the binding mode of these compounds within the active site of the target enzyme. A selection of HIV-1-RNase H-inhibitory Mannich bases was tested for antiviral activity against HIV-1, and compound 2k showed the highest activity at low toxicity to host cells. The lawsone Mannich bases 1e and 2k also underwent a preliminary screening for activity against SARS-CoV-2, and compound 1e was found to inhibit SARS-CoV-2 replication (IC50 = 11.2 µM).
Collapse
Affiliation(s)
- Nhat Quang Tu
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Paris-Saclay, Centre National de la Recherche Scientifique UMR 8113, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (N.Q.T.); (C.R.); (O.D.)
| | - Clémence Richetta
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Paris-Saclay, Centre National de la Recherche Scientifique UMR 8113, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (N.Q.T.); (C.R.); (O.D.)
| | - Federica Putzu
- Department of Life and Environmental Sciences, University of Cagliari Biomedical Section, Laboratory of Molecular Virology, E Block, First Floor, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy; (F.P.); (E.T.)
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), ENS-Paris-Saclay, Centre National de la Recherche Scientifique UMR 8113, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (N.Q.T.); (C.R.); (O.D.)
| | - Khursheed Ahmed
- Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India;
| | - Vijay H. Masand
- Department of Chemistry, Vidyabharati Mahavidyalaya, Amravati 444602, India;
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, 95447 Bayreuth, Germany;
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari Biomedical Section, Laboratory of Molecular Virology, E Block, First Floor, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy; (F.P.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari Biomedical Section, Laboratory of Molecular Virology, E Block, First Floor, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy; (F.P.); (E.T.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, 95447 Bayreuth, Germany;
| |
Collapse
|
2
|
Shin Y, Park CM, Kim DE, Kim S, Lee SY, Lee JY, Jeon WH, Kim HG, Bae S, Yoon CH. Discovery of new acetamide derivatives of 5-indole-1,3,4-oxadiazol-2-thiol as inhibitors of HIV-1 Tat-mediated viral transcription. Antimicrob Agents Chemother 2024; 68:e0064324. [PMID: 39230310 PMCID: PMC11459959 DOI: 10.1128/aac.00643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes a transcriptional factor called Tat, which is critical for viral transcription. Tat-mediated transcription is highly ordered apart from the cellular manner; therefore, it is considered a target for developing anti-HIV-1 drugs. However, drugs targeting Tat-mediated viral transcription are not yet available. Our high-throughput screen of a compound library employing a dual-reporter assay identified a 1,3,4-oxadiazole scaffold against Tat and HIV-1 infection. Furthermore, a serial structure-activity relation (SAR) study performed with biological assays found 1,3,4-oxadiazole derivatives (9 and 13) containing indole and acetamide that exhibited potent inhibitory effects on HIV-1 infectivity, with half-maximal effective concentrations (EC50) of 0.17 (9) and 0.24 µM (13), respectively. The prominent derivatives specifically interfered with the viral transcriptional step without targeting other infection step(s) and efficiently inhibited the HIV-1 replication cycle in the T cell lines and peripheral blood mononuclear cells infected with HIV-1. Additionally, compared to the wild type, the compounds exhibited similar potency against anti-retroviral drug-resistant HIV-1 strains. In a series of mode-of-action studies, the compounds inhibited the ejection of histone H3 for facilitating viral transcription on the long-terminal repeat (LTR) promoter. Furthermore, SAHA (a histone deacetylase inhibitor) treatment abolished the compound potency, revealing that the compounds can possibly target Tat-regulated epigenetic modulation of LTR to inhibit viral transcription. Overall, our screening identified novel 1,3,4-oxadiazole compounds that inhibited HIV-1 Tat, and subsequent SAR-based optimization led to the derivatives 9 and 13 development that could be a promising scaffold for developing a new class of therapeutic agents for HIV-1 infection.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sungmin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Ochang Center, Korea Basic Science Institute, Cheongju-si, Republic of Korea
| | - Jun Young Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Won-Hui Jeon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hong Gi Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Yoon J, Lee J, Kim J, Lee SM, Kim S, Park HG. A novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension reaction. Biosens Bioelectron 2024; 253:116174. [PMID: 38432074 DOI: 10.1016/j.bios.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
We herein present a novel ultrasensitive RNase H assay based on phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) reaction. The detection probe employed as a key component in this technique serves as a substrate for RNase H and triggers the PS-THSP reaction upon the RNase H-mediated degradation of the probe. As a consequence, a large number of long concatemeric amplification products could be produced and used to identify the RNase H activity through the fluorescence signals produced by the nucleic acid-specific fluorescent dye, SYTO 9. Importantly, the use of the gp32 protein allowed the PS-THSP reaction to be performed at 37 °C, ultimately enabling an isothermal one-step RNase H assay. Based on this sophisticated design principle, the RNase H activity was very sensitively detected, down to 0.000237 U mL-1 with high specificity. We further verified its practical applicability through its successful application to the screening of RNase H inhibitors. With its operational convenience and excellent analytical performance, this technique could serve as a new platform for RNase H assay in a wide range of biological applications.
Collapse
Affiliation(s)
- Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinhwan Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaemin Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soohyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Borgelt L, Wu P. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. ACS Chem Biol 2023; 18:2101-2113. [PMID: 37382390 PMCID: PMC10594538 DOI: 10.1021/acschembio.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Ribonucleases (RNases) cleave and process RNAs, thereby regulating the biogenesis, metabolism, and degradation of coding and noncoding RNAs. Thus, small molecules targeting RNases have the potential to perturb RNA biology, and RNases have been studied as therapeutic targets of antibiotics, antivirals, and agents for autoimmune diseases and cancers. Additionally, the recent advances in chemically induced proximity approaches have led to the discovery of bifunctional molecules that target RNases to achieve RNA degradation or inhibit RNA processing. Here, we summarize the efforts that have been made to discover small-molecule inhibitors and activators targeting bacterial, viral, and human RNases. We also highlight the emerging examples of RNase-targeting bifunctional molecules and discuss the trends in developing such molecules for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max
Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, Dortmund 44227, Germany
| | | |
Collapse
|
5
|
Corona A, Madia VN, De Santis R, Manelfi C, Emmolo R, Ialongo D, Patacchini E, Messore A, Amatore D, Faggioni G, Artico M, Iaconis D, Talarico C, Di Santo R, Lista F, Costi R, Tramontano E. Diketo acid inhibitors of nsp13 of SARS-CoV-2 block viral replication. Antiviral Res 2023; 217:105697. [PMID: 37562607 DOI: 10.1016/j.antiviral.2023.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Riccardo De Santis
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Candida Manelfi
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberta Emmolo
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Elisa Patacchini
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Donatella Amatore
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Giovanni Faggioni
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, "Sapienza" Università di Roma, V.le Regina Elena 324, I-00161, Rome, Italy
| | - Daniela Iaconis
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Carmine Talarico
- EXSCALATE - Dompé Farmaceutici SpA, via Tommaso De Amicis 95, 80131, Napoli, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy
| | - Florigio Lista
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci-Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente. Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, SS-554, Monserrato, Cagliari, Italy.
| |
Collapse
|
6
|
Corona A, Meleddu R, Delelis O, Subra F, Cottiglia F, Esposito F, Distinto S, Maccioni E, Tramontano E. 5-Nitro-3-(2-(4-phenylthiazol-2-yl)hydrazineylidene)indolin-2-one derivatives inhibit HIV-1 replication by a multitarget mechanism of action. Front Cell Infect Microbiol 2023; 13:1193280. [PMID: 37424782 PMCID: PMC10328743 DOI: 10.3389/fcimb.2023.1193280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Olivier Delelis
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Frederic Subra
- Laboratory of Biology and Applied Pharmacology (LBPA), Ecole Normale Supérieure (ENS) Cachan, Centre National de la Recherche Scientifique (CNRS), Cachan, France
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
7
|
Al Nasr IS, Corona A, Koko WS, Khan TA, Ben Said R, Daoud I, Rahali S, Tramontano E, Schobert R, Amdouni N, Biersack B. Versatile anti-infective properties of pyrido- and dihydropyrido[2,3-d]pyrimidine-based compounds. Bioorg Med Chem 2023; 90:117376. [PMID: 37336083 DOI: 10.1016/j.bmc.2023.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
A series of 1H-indeno[2',1':5,6]dihydropyrido[2,3-d]pyrimidine and 1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine derivatives was prepared and screened for antiparasitic and viral RNase H inhibitory activity. Several compounds showed considerable activity against Toxoplasma gondii parasites and Leishmania major amastigotes, which warrants further investigation. Based on the structural similarities of certain derivatives with common viral RNase H inhibitors, a HIV-1 RNase H assay was used to study the RNase H inhibition by selected test compounds. Docking of active derivatives into the active site of the HIV-1 RNase H enzyme was carried out. The new compound 2a, inactive in the antiparasitic tests, showed distinct HIV-1 RNase H inhibition. Thus, ring substitution determines antiparasitic or HIV-1 RNase H inhibitory activity of this promising compound class.
Collapse
Affiliation(s)
- Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia; Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Angela Corona
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia; Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Ismail Daoud
- University Mohamed Khider, Department of Matter Sciences, BP 145 RP, Biskra, Algeria; Laboratory of Natural and Bio-active Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Enzo Tramontano
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Italy
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Noureddine Amdouni
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Bernhard Biersack
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany.
| |
Collapse
|
8
|
Fois B, Corona A, Tramontano E, Distinto S, Maccioni E, Meleddu R, Caboni P, Floris C, Cottiglia F. Flavonoids and Acid-Hydrolysis derivatives of Neo-Clerodane diterpenes from Teucrium flavum subsp. glaucum as inhibitors of the HIV-1 reverse transcriptase-associated RNase H function. J Enzyme Inhib Med Chem 2021; 36:749-757. [PMID: 33715562 PMCID: PMC7952052 DOI: 10.1080/14756366.2021.1887170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase–associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 μM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors.
Collapse
Affiliation(s)
- Benedetta Fois
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Costantino Floris
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| |
Collapse
|
9
|
Meleddu R, Corona A, Distinto S, Cottiglia F, Deplano S, Sequeira L, Secci D, Onali A, Sanna E, Esposito F, Cirone I, Ortuso F, Alcaro S, Tramontano E, Mátyus P, Maccioni E. Exploring New Scaffolds for the Dual Inhibition of HIV-1 RT Polymerase and Ribonuclease Associated Functions. Molecules 2021; 26:molecules26133821. [PMID: 34201561 PMCID: PMC8270338 DOI: 10.3390/molecules26133821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Current therapeutic protocols for the treatment of HIV infection consist of the combination of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds were active towards the two functions, although at different concentrations. The substitution pattern on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl} benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP (IC50 = 8.0 mM) HIV RT-associated functions.
Collapse
Affiliation(s)
- Rita Meleddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Simona Distinto
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Serenella Deplano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Lisa Sequeira
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Daniela Secci
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Alessia Onali
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Erica Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Italo Cirone
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy; (F.O.); (S.A.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Graecia di Catanzaro, Campus ‘S. Venuta’, Viale Europa, 88100 Catanzaro, Italy; (F.O.); (S.A.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
| | - Péter Mátyus
- Institute of Digital Health Sciences, Faculty of Health and Public Services, Semmelweis University, Ferenc tér 15, 1094 Budapest, Hungary;
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy; (R.M.); (A.C.); (S.D.); (F.C.); (S.D.); (L.S.); (D.S.); (A.O.); (E.S.); (F.E.); (I.C.); (E.T.)
- Correspondence: ; Tel.: +39-070-6758744
| |
Collapse
|
10
|
Messore A, Corona A, Madia VN, Saccoliti F, Tudino V, De Leo A, Ialongo D, Scipione L, De Vita D, Amendola G, Novellino E, Cosconati S, Métifiot M, Andreola ML, Esposito F, Grandi N, Tramontano E, Costi R, Di Santo R. Quinolinonyl Non-Diketo Acid Derivatives as Inhibitors of HIV-1 Ribonuclease H and Polymerase Functions of Reverse Transcriptase. J Med Chem 2021; 64:8579-8598. [PMID: 34106711 PMCID: PMC8279492 DOI: 10.1021/acs.jmedchem.1c00535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Novel anti-HIV agents
are still needed to overcome resistance issues,
in particular inhibitors acting against novel viral targets. The ribonuclease
H (RNase H) function of the reverse transcriptase (RT) represents
a validated and promising target, and no inhibitor has reached the
clinical pipeline yet. Here, we present rationally designed non-diketo
acid selective RNase H inhibitors (RHIs) based on the quinolinone
scaffold starting from former dual integrase (IN)/RNase H quinolinonyl
diketo acids. Several derivatives were synthesized and tested against
RNase H and viral replication and found active at micromolar concentrations.
Docking studies within the RNase H catalytic site, coupled with site-directed
mutagenesis, and Mg2+ titration experiments demonstrated
that our compounds coordinate the Mg2+ cofactor and interact
with amino acids of the RNase H domain that are highly conserved among
naïve and treatment-experienced patients. In general, the new
inhibitors influenced also the polymerase activity of RT but were
selective against RNase H vs the IN enzyme.
Collapse
Affiliation(s)
- Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- D3 PharmaChemistry, Italian Institute of Technology, Via Morego 30, I-16163 Genova, Italy
| | - Valeria Tudino
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Alessandro De Leo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Luigi Scipione
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, "Sapienza" University of Rome, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Amendola
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Mathieu Métifiot
- Laboratoire MFP, UMR 5234, CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Marie-Line Andreola
- Laboratoire MFP, UMR 5234, CNRS - Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, SS554-09042 Monserrato (CA), Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
11
|
Corona A, Seibt S, Schaller D, Schobert R, Volkamer A, Biersack B, Tramontano E. Garcinol from Garcinia indica inhibits HIV-1 reverse transcriptase-associated ribonuclease H. Arch Pharm (Weinheim) 2021; 354:e2100123. [PMID: 34008218 DOI: 10.1002/ardp.202100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/06/2022]
Abstract
The bioactive components of Garcinia indica, garcinol (camboginol), and isogarcinol (cambogin), are suitable drug candidates for the treatment of various human diseases. HIV-1-RNase H assay was used to study the RNase H inhibition by garcinol and isogarcinol. Docking of garcinol into the active site of the enzyme was carried out to rationalize the difference in activities between the two compounds. Garcinol showed higher HIV-1-RNase H inhibition than the known inhibitor RDS1759 and retained full potency against the RNase H of a drug-resistant HIV-1 reverse transcriptase form. Isogarcinol was distinctly less active than garcinol, indicating the importance of the enolizable β-diketone moiety of garcinol for anti-RNase H activity. Docking calculations confirmed these findings and suggested this moiety to be involved in the chelation of metal ions of the active site. On the basis of its HIV-1 reverse transcriptase-associated RNase H inhibitory activity, garcinol is worth being further explored concerning its potential as a cost-effective treatment for HIV patients.
Collapse
Affiliation(s)
- Angela Corona
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Monserrato, Italy
| | - Sebastian Seibt
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - David Schaller
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Andrea Volkamer
- In Silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth, Germany
| | - Enzo Tramontano
- Laboratorio di Virologia Molecolare, Dipartimento di Scienze della Vita e Dell'Ambiente, Universitá degli Studi di Cagliari, Monserrato, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| |
Collapse
|
12
|
Tocco G, Esposito F, Caboni P, Laus A, Beutler JA, Wilson JA, Corona A, Le Grice SFJ, Tramontano E. Scaffold hopping and optimisation of 3',4'-dihydroxyphenyl- containing thienopyrimidinones: synthesis of quinazolinone derivatives as novel allosteric inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H. J Enzyme Inhib Med Chem 2020; 35:1953-1963. [PMID: 33143469 PMCID: PMC7646544 DOI: 10.1080/14756366.2020.1835884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted. Thus, in this article, the most active 2-(3,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one 1 was selected as the hit scaffold and several isosteric substitutions of the thiophene ring were performed. A novel series of highly active RNase H allosteric quinazolinone inhibitors was thus obtained. To determine their target selectivity, they were tested against RT-associated RNA-dependent DNA polymerase (RDDP) and integrase (IN). Interestingly, none of the compounds were particularly active on (RDDP) but many displayed micromolar to submicromolar activity against IN.
Collapse
Affiliation(s)
- Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Antonio Laus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - John A Beutler
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
| | - Jennifer A Wilson
- Molecular Targets Program, National Cancer Institute, Frederick, MD, USA
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | | | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| |
Collapse
|