1
|
Vicient CM. Retand LTR-retrotransposons in plants: a long way from pol to 3'LTR. Mob DNA 2025; 16:15. [PMID: 40176144 PMCID: PMC11963269 DOI: 10.1186/s13100-025-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Plant Gypsy LTR-retrotransposons are classified into lineages according to the phylogenetic relationships of the reverse transcriptase. Retand is a lineage of non-chromovirus elements characterized by the presence of a long internal region compared to other lineages. RESULTS This work focuses on the identification and characterization of Potentially Recently Active Retand Elements (PRAREs) in 617 genomic sequence assemblies of Viridiplantae species. The Retand elements were considered PRAREs if their LTRs and insertion sequences were identical, and the sizes of their internal regions and LTRs did not differ by more than 2% from the consensus. A total of 2,735 PRAREs were identified, distributed in 122 clusters corresponding to 34 species, with copy numbers per cluster varying between 1 and 180. They are present in Eudicotyledons and Liliopsida but not in other groups of plants. Some PRAREs are non-autonomous elements, lacking some of the typical LTR retrotransposon coding domains. The size of the POL-3'LTR regions varies between 2,933 and 6,566 bp, and in all cases, includes potential coding regions oriented antisense to the gag and pol genes. 97% of the clusters contain antisense ORFs encoding the TRP28 protein domain of unknown function. The analysis of the consensus TRP28 domain indicates that it probably can bind DNA. About half of the PRAREs contain arrays of tandem repeats in the POL-3'LTR region. CONCLUSIONS The large internal region of the Retand elements is due to the presence of a long POL-3'LTR region. This region frequently contains arrays of tandem repeats that contribute to the expansion of this area. The presence of antisense ORFs in the POL-3'LTR region is also a common feature in these elements, many of which encode proteins with conserved domains, especially the TRP28 domain. The possible function of these TRP28-containing proteins is unknown, but their potential DNA binding capacity and the comparison with similar genes in some retroviruses suggest that they may play a regulatory role in the Retand transposition process.
Collapse
Affiliation(s)
- Carlos M Vicient
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193, Spain.
| |
Collapse
|
2
|
López-Cortegano E, Chebib J, Jonas A, Vock A, Künzel S, Keightley PD, Tautz D. The rate and spectrum of new mutations in mice inferred by long-read sequencing. Genome Res 2025; 35:43-54. [PMID: 39622636 PMCID: PMC11789640 DOI: 10.1101/gr.279982.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
All forms of genetic variation originate from new mutations, making it crucial to understand their rates and mechanisms. Here, we use long-read sequencing from Pacific Biosciences (PacBio) to investigate de novo mutations that accumulated in 12 inbred mouse lines derived from three commonly used inbred strains (C3H, C57BL/6, and FVB) maintained for 8 to 15 generations in a mutation accumulation (MA) experiment. We built chromosome-level genome assemblies based on the MA line founders' genomes and then employed a combination of read and assembly-based methods to call the complete spectrum of new mutations. On average, there are about 45 mutations per haploid genome per generation, about half of which (54%) are insertions and deletions shorter than 50 bp (indels). The remainder are single-nucleotide mutations (SNMs; 44%) and large structural mutations (SMs; 2%). We found that the degree of DNA repetitiveness is positively correlated with SNM and indel rates and that a substantial fraction of SMs can be explained by homology-dependent mechanisms associated with repeat sequences. Most (90%) indels can be attributed to microsatellite contractions and expansions, and there is a marked bias toward 4 bp indels. Among the different types of SMs, tandem repeat mutations have the highest mutation rate, followed by insertions of transposable elements (TEs). We uncover a rich landscape of active TEs, notable differences in their spectrum among MA lines and strains, and a high rate of gene retroposition. Our study offers novel insights into mammalian genome evolution and highlights the importance of repetitive elements in shaping genomic diversity.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anastasia Vock
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
3
|
Lee SM, Surani MA. Epigenetic reprogramming in mouse and human primordial germ cells. Exp Mol Med 2024; 56:2578-2587. [PMID: 39672813 DOI: 10.1038/s12276-024-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 12/15/2024] Open
Abstract
Primordial germ cells (PGCs) are the precursors of sperm and eggs. They undergo genome-wide epigenetic reprogramming to erase epigenetic memory and reset the genomic potential for totipotency. Global DNA methylation erasure is a crucial part of epigenetic resetting when DNA methylation levels decrease across the genome to <5%. However, certain localized regions exhibit slower demethylation or resistance to reprogramming. Since DNA methylation plays a crucial role in transcriptional regulation, this depletion in PGCs requires mechanisms independent of DNA methylation to regulate transcriptional control during PGC reprogramming. Histone modifications are predicted to compensate for the loss of DNA methylation in gene regulation. Different histone modifications exhibit distinct patterns in PGCs undergoing epigenetic programming at the genomic level during PGC development in conjunction with changes in DNA methylation. Together, they contribute to PGC-specific genomic regulation. Recent findings related to these processes provide a comprehensive overview of germline epigenetic reprogramming and its importance in mouse and human PGC development. Additionally, we evaluated the extent to which in vitro culture techniques have replicated the development processes of human PGCs.
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk University, Seoul, Korea.
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Chebib J, Jonas A, López-Cortegano E, Künzel S, Tautz D, Keightley PD. An estimate of fitness reduction from mutation accumulation in a mammal allows assessment of the consequences of relaxed selection. PLoS Biol 2024; 22:e3002795. [PMID: 39325822 PMCID: PMC11426515 DOI: 10.1371/journal.pbio.3002795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Each generation, spontaneous mutations introduce heritable changes that tend to reduce fitness in populations of highly adapted living organisms. This erosion of fitness is countered by natural selection, which keeps deleterious mutations at low frequencies and ultimately removes most of them from the population. The classical way of studying the impact of spontaneous mutations is via mutation accumulation (MA) experiments, where lines of small effective population size are bred for many generations in conditions where natural selection is largely removed. Such experiments in microbes, invertebrates, and plants have generally demonstrated that fitness decays as a result of MA. However, the phenotypic consequences of MA in vertebrates are largely unknown, because no replicated MA experiment has previously been carried out. This gap in our knowledge is relevant for human populations, where societal changes have reduced the strength of natural selection, potentially allowing deleterious mutations to accumulate. Here, we study the impact of spontaneous MA on the mean and genetic variation for quantitative and fitness-related traits in the house mouse using the MA experimental design, with a cryopreserved control to account for environmental influences. We show that variation for morphological and life history traits accumulates at a sufficiently high rate to maintain genetic variation and selection response. Weight and tail length measures decrease significantly between 0.04% and 0.3% per generation with narrow confidence intervals. Fitness proxy measures (litter size and surviving offspring) decrease on average by about 0.2% per generation, but with confidence intervals overlapping zero. When extrapolated to humans, our results imply that the rate of fitness loss should not be of concern in the foreseeable future.
Collapse
Affiliation(s)
- Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter D. Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Enriquez-Gasca R, Gould PA, Tunbak H, Conde L, Herrero J, Chittka A, Beck CR, Gifford R, Rowe HM. Co-option of endogenous retroviruses through genetic escape from TRIM28 repression. Cell Rep 2023; 42:112625. [PMID: 37294634 PMCID: PMC11980785 DOI: 10.1016/j.celrep.2023.112625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Endogenous retroviruses (ERVs) have rewired host gene networks. To explore the origins of co-option, we employed an active murine ERV, IAPEz, and an embryonic stem cell (ESC) to neural progenitor cell (NPC) differentiation model. Transcriptional silencing via TRIM28 maps to a 190 bp sequence encoding the intracisternal A-type particle (IAP) signal peptide, which confers retrotransposition activity. A subset of "escapee" IAPs (∼15%) exhibits significant genetic divergence from this sequence. Canonical repressed IAPs succumb to a previously undocumented demarcation by H3K9me3 and H3K27me3 in NPCs. Escapee IAPs, in contrast, evade repression in both cell types, resulting in their transcriptional derepression, particularly in NPCs. We validate the enhancer function of a 47 bp sequence within the U3 region of the long terminal repeat (LTR) and show that escapee IAPs convey an activating effect on nearby neural genes. In sum, co-opted ERVs stem from genetic escapees that have lost vital sequences required for both TRIM28 restriction and autonomous retrotransposition.
Collapse
Affiliation(s)
- Rocio Enriquez-Gasca
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| | - Poppy A Gould
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hale Tunbak
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Alexandra Chittka
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Christine R Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, The Jackson Laboratory for Genomic Medicine, Connecticut, JAX CT, Farmington, CT 06032, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G611QH, UK
| | - Helen M Rowe
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
6
|
Ferraj A, Audano PA, Balachandran P, Czechanski A, Flores JI, Radecki AA, Mosur V, Gordon DS, Walawalkar IA, Eichler EE, Reinholdt LG, Beck CR. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. CELL GENOMICS 2023; 3:100291. [PMID: 37228752 PMCID: PMC10203049 DOI: 10.1016/j.xgen.2023.100291] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023]
Abstract
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural variants (SVs) (variants ≥ 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic variation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences.
Collapse
Affiliation(s)
- Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter A. Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | | | - Jacob I. Flores
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alexander A. Radecki
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Varun Mosur
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - David S. Gordon
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isha A. Walawalkar
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Evan E. Eichler
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Zhou X, Sam TW, Lee AY, Leung D. Mouse strain-specific polymorphic provirus functions as cis-regulatory element leading to epigenomic and transcriptomic variations. Nat Commun 2021; 12:6462. [PMID: 34753915 PMCID: PMC8578388 DOI: 10.1038/s41467-021-26630-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022] Open
Abstract
Polymorphic integrations of endogenous retroviruses (ERVs) have been previously detected in mouse and human genomes. While most are inert, a subset can influence the activity of the host genes. However, the molecular mechanism underlying how such elements affect the epigenome and transcriptome and their roles in driving intra-specific variation remain unclear. Here, by utilizing wildtype murine embryonic stem cells (mESCs) derived from distinct genetic backgrounds, we discover a polymorphic MMERGLN (GLN) element capable of regulating H3K27ac enrichment and transcription of neighboring loci. We demonstrate that this polymorphic element can enhance the neighboring Klhdc4 gene expression in cis, which alters the activity of downstream stress response genes. These results suggest that the polymorphic ERV-derived cis-regulatory element contributes to differential phenotypes from stimuli between mouse strains. Moreover, we identify thousands of potential polymorphic ERVs in mESCs, a subset of which show an association between proviral activity and nearby chromatin states and transcription. Overall, our findings elucidate the mechanism of how polymorphic ERVs can shape the epigenome and transcriptional networks that give rise to phenotypic divergence between individuals.
Collapse
Affiliation(s)
- Xuemeng Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Tsz Wing Sam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Ah Young Lee
- Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China
| | - Danny Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China. .,Center for Epigenomics Research, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR, China.
| |
Collapse
|
8
|
Costello KR, Leung A, Trac C, Lee M, Basam M, Pospisilik JA, Schones DE. Sequence features of retrotransposons allow for epigenetic variability. eLife 2021; 10:71104. [PMID: 34668484 PMCID: PMC8555987 DOI: 10.7554/elife.71104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that make up a large fraction of mammalian genomes. While select TEs have been co-opted in host genomes to have function, the majority of these elements are epigenetically silenced by DNA methylation in somatic cells. However, some TEs in mice, including the Intracisternal A-particle (IAP) subfamily of retrotransposons, have been shown to display interindividual variation in DNA methylation. Recent work has revealed that IAP sequence differences and strain-specific KRAB zinc finger proteins (KZFPs) may influence the methylation state of these IAPs. However, the mechanisms underlying the establishment and maintenance of interindividual variability in DNA methylation still remain unclear. Here, we report that sequence content and genomic context influence the likelihood that IAPs become variably methylated. IAPs that differ from consensus IAP sequences have altered KZFP recruitment that can lead to decreased KAP1 recruitment when in proximity of constitutively expressed genes. These variably methylated loci have a high CpG density, similar to CpG islands, and can be bound by ZF-CxxC proteins, providing a potential mechanism to maintain this permissive chromatin environment and protect from DNA methylation. These observations indicate that variably methylated IAPs escape silencing through both attenuation of KZFP binding and recognition by ZF-CxxC proteins to maintain a hypomethylated state.
Collapse
Affiliation(s)
- Kevin R Costello
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Candi Trac
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States
| | | | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, Duarte, United States.,Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, United States
| |
Collapse
|
9
|
Gale Hammell M, Rowe HM. Editorial Overview: Endogenous Retroviruses in Development and Disease. Viruses 2020; 12:v12121446. [PMID: 33339171 PMCID: PMC7765662 DOI: 10.3390/v12121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Molly Gale Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Correspondence: (M.G.H.); (H.M.R.)
| | - Helen M. Rowe
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, 4 Newark St, London E1 2AT, UK
- Correspondence: (M.G.H.); (H.M.R.)
| |
Collapse
|
10
|
Host Gene Regulation by Transposable Elements: The New, the Old and the Ugly. Viruses 2020; 12:v12101089. [PMID: 32993145 PMCID: PMC7650545 DOI: 10.3390/v12101089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The human genome has been under selective pressure to evolve in response to emerging pathogens and other environmental challenges. Genome evolution includes the acquisition of new genes or new isoforms of genes and changes to gene expression patterns. One source of genome innovation is from transposable elements (TEs), which carry their own promoters, enhancers and open reading frames and can act as ‘controlling elements’ for our own genes. TEs include LINE-1 elements, which can retrotranspose intracellularly and endogenous retroviruses (ERVs) that represent remnants of past retroviral germline infections. Although once pathogens, ERVs also represent an enticing source of incoming genetic material that the host can then repurpose. ERVs and other TEs have coevolved with host genes for millions of years, which has allowed them to become embedded within essential gene expression programmes. Intriguingly, these host genes are often subject to the same epigenetic control mechanisms that evolved to combat the TEs that now regulate them. Here, we illustrate the breadth of host gene regulation through TEs by focusing on examples of young (The New), ancient (The Old), and disease-causing (The Ugly) TE integrants.
Collapse
|