1
|
Li D, Han S, Zhang K, Xu G, Zhang H, Chen F, Wang L, Liu Q, Guo Z, Zhang J, Li J. Genome Analysis and Safety Assessment of Achromobacter marplatensis Strain YKS2 Strain Isolated from the Rumen of Yaks in China. Probiotics Antimicrob Proteins 2024; 16:1638-1656. [PMID: 37491503 DOI: 10.1007/s12602-023-10124-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Achromobacter marplatensis strain YKS2 isolated from the yak rumen has the feature of producing cellulose. This study aims to analyze the genome and safety of strain YKS2 in vivo, considering its future research and application prospects. The genome of strain YKS2 was sequenced and used for genomic in silico studies. The administration of strain YKS2 in three doses was carried out on mice for 3 days of oral and 7 days of clinical observation tests. The BW, FI, organ indices, gut microbiota, and histological appearances of organs and intestines, along with hematological parameters and serum biochemistry, were measured in mice. The chromosome size of strain YKS2 was 6,588,568 bp, with a GC content of 65.27%. The 6058 coding sequences of strain YKS2 without plasmid were predicted and annotated and have multiple functions. The mice in all groups were alive, with good mental states and functional activities. Compared with the control group, there was no significant difference in the three dose groups on BW, FI, hematological parameters (WBC, LYM, etc.), and serum biochemistry (ALB, ALT, etc.). No abnormalities were observed in the main visceral organs, intestinal tissue, and V/C value in groups. However, the IEL number of duodenum and gut microbiota diversity (Shannon's index) in the high-dose group was significantly higher than in the control group (p < 0.05). Besides, the low dose of strain YKS2 also significantly affected the bacterial abundance of Firmicutes, Actinobacteria, and desulphurizing Bacteroidetes at the phylum level. There was no significant effect at genus levels in groups. In conclusion, the study revealed the genome and potential functional genes of strain YKS2, which is beneficial to understanding the features of the A. marplatensis strain and proved strain YKS2 to be without acute toxicity to mice. However, a long-term feeding toxicity experiment in vivo should be performed to further ensure its potential application value strain in the animal industry.
Collapse
Affiliation(s)
- Dapeng Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
- College of Veterinary Medicine, Hebei Agricultural University, Hebei, 071000, China
| | - Songwei Han
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Kang Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guowei Xu
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Hong Zhang
- Agricultural Products Quality and Safety Inspection and Testing Center of Gansu Province, Lanzhou, 730050, China
| | - Fubing Chen
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lei Wang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Qin Liu
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zhiting Guo
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jingyan Zhang
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| |
Collapse
|
2
|
Parra B, Cockx B, Lutz VT, Brøndsted L, Smets BF, Dechesne A. Isolation and characterization of novel plasmid-dependent phages infecting bacteria carrying diverse conjugative plasmids. Microbiol Spectr 2024; 12:e0253723. [PMID: 38063386 PMCID: PMC10782986 DOI: 10.1128/spectrum.02537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023] Open
Abstract
IMPORTANCE This work was undertaken because plasmid-dependent phages can reduce the prevalence of conjugative plasmids and can be leveraged to prevent the acquisition and dissemination of ARGs by bacteria. The two novel phages described in this study, Lu221 and Hi226, can infect Escherichia coli, Salmonella enterica, Kluyvera sp. and Enterobacter sp. carrying conjugative plasmids. This was verified with plasmids carrying resistance determinants and belonging to the most common plasmid families among Gram-negative pathogens. Therefore, the newly isolated phages could have the potential to help control the spread of ARGs and thus help combat the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Boris Parra
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Laboratorio de Investigación de Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Bastiaan Cockx
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Veronika T. Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, København, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, København, Denmark
| | - Barth F. Smets
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Batinovic S, Chan HT, Stiles J, Petrovski S. Complete genome sequences of Providencia bacteriophages PibeRecoleta, Stilesk and PatoteraRojo. BMC Genom Data 2023; 24:49. [PMID: 37658299 PMCID: PMC10472563 DOI: 10.1186/s12863-023-01153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES Providencia is a genus of gram-negative bacteria within the order Enterobacterales, closely related to Proteus and Morganella. While ubiquitous in the environment, some species of Providencia, such as P. rettgeri and P. stuartii, are considered emerging nosocomial pathogens and have been implicated in urinary tract infection, gastrointestinal illness, and travelers' diarrhea. Given their intrinsic resistance to many commonly used antibiotics, this study aimed to isolate and sequence bacteriophages targeting a clinical P. rettgeri isolate. DATA DESCRIPTION Here we report the complete genome sequence of three novel Providencia phages, PibeRecoleta, Stilesk and PatoteraRojo, which were isolated against a clinical P. rettgeri strain sourced from a patient in a metropolitan hospital in Victoria, Australia. The three phages contain dsDNA genomes between 60.7 and 60.9 kb in size and are predicted to encode between 72 and 73 proteins. These three new phages, which share high genomic similarity to two other Providencia phages previously isolated on P. stuartii, serve as important resources in our understanding about Providencia bacteriophages and the potential for future phage-based biotherapies.
Collapse
Affiliation(s)
- Steven Batinovic
- Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan.
| | - Hiu Tat Chan
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
- Department of Microbiology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jason Stiles
- Department of Microbiology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Expansion of Kuravirus-like Phage Sequences within the Past Decade, including Escherichia Phage YF01 from Japan, Prompt the Creation of Three New Genera. Viruses 2023; 15:v15020506. [PMID: 36851720 PMCID: PMC9965538 DOI: 10.3390/v15020506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Bacteriophages, viruses that infect bacteria, are currently receiving significant attention amid an ever-growing global antibiotic resistance crisis. In tandem, a surge in the availability and affordability of next-generation and third-generation sequencing technologies has driven the deposition of a wealth of phage sequence data. Here, we have isolated a novel Escherichia phage, YF01, from a municipal wastewater treatment plant in Yokohama, Japan. We demonstrate that the YF01 phage shares a high similarity to a collection of thirty-five Escherichia and Shigella phages found in public databases, six of which have been previously classified into the Kuravirus genus by the International Committee on Taxonomy of Viruses (ICTV). Using modern phylogenetic approaches, we demonstrate that an expansion and reshaping of the current six-membered Kuravirus genus is required to accommodate all thirty-six member phages. Ultimately, we propose the creation of three additional genera, Vellorevirus, Jinjuvirus, and Yesanvirus, which will allow a more organized approach to the addition of future Kuravirus-like phages.
Collapse
|
5
|
Novović K, Malešević M, Gardijan L, Kojić M, Jovčić B. Novel RclSAR three-component system regulates expression of the intI1 gene in the stationary growth phase. Res Microbiol 2021; 173:103885. [PMID: 34648877 DOI: 10.1016/j.resmic.2021.103885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
The rapid and appropriate response of Pseudomonas spp. to environmental fluctuations has been enabled by numerous signal transduction regulatory systems. Regulatory systems in Pseudomonas aeruginosa are organized in a complex network which provides quick and fine-tuned cellular response through regulation of virulence and antibiotic resistance determinants production. Mobile integrons represent genetic elements included in the rapid dissemination of multiple antibiotic resistance determinants. The key factor of integron dynamics is enzyme integrase. So far, global regulators LexA, RpoS and PsrA have been recognized as regulators of the intI1 transcription. In this study, we discovered novel activator of the intI1 transcription, sensor kinase RclS, in P. putida WCS358. This regulation is limited to stationary growth phase and appears to be indirect, at least through regulation of the rpoS expression. Sensor kinase RclS is a part of novel three-component system Rcl (Roc-like) together with two response regulators, RclR and RclA. RclS acted as a negative regulator of the rclA transcription, while the role in the rclR transcription regulation could not be defined. The RclSAR regulatory system seems to be a part of complex intI1 regulatory network which includes major stress response (SOS and RpoS) regulons.
Collapse
Affiliation(s)
- Katarina Novović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Milka Malešević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Lazar Gardijan
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Milan Kojić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia.
| | - Branko Jovčić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia; University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
6
|
Ku H, Kabwe M, Chan HT, Stanton C, Petrovski S, Batinovic S, Tucci J. Novel Drexlerviridae bacteriophage KMI8 with specific lytic activity against Klebsiella michiganensis and its biofilms. PLoS One 2021; 16:e0257102. [PMID: 34492081 PMCID: PMC8423285 DOI: 10.1371/journal.pone.0257102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
The bacterial genus Klebsiella includes the closely related species K. michiganensis, K. oxytoca and K. pneumoniae, which are capable of causing severe disease in humans. In this report we describe the isolation, genomic and functional characterisation of the lytic bacteriophage KMI8 specific for K. michiganensis. KMI8 belongs to the family Drexlerviridae, and has a novel genome which shares very little homology (71.89% identity over a query cover of only 8%) with that of its closest related bacteriophages (Klebsiella bacteriophage LF20 (MW417503.1); Klebsiella bacteriophage 066039 (MW042802.1). KMI8, which possess a putative endosialidase (depolymerase) enzyme, was shown to be capable of degrading mono-biofilms of a strain of K. michiganensis that carried the polysaccharide capsule KL70 locus. This is the first report of a lytic bacteriophage for K. michiganensis, which is capable of breaking down a biofilm of this species.
Collapse
Affiliation(s)
- Heng Ku
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Mwila Kabwe
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Victoria, Australia
| | - Cassandra Stanton
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Victoria, Australia
| | - Joseph Tucci
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
- * E-mail:
| |
Collapse
|
7
|
Analysis of a Novel Bacteriophage vB_AchrS_AchV4 Highlights the Diversity of Achromobacter Viruses. Viruses 2021; 13:v13030374. [PMID: 33673419 PMCID: PMC7996906 DOI: 10.3390/v13030374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Achromobacter spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of Achromobacter phages are available in GenBank, and nearly all of those phages were isolated on Achromobacter xylosoxidans. Here, we report the isolation and characterization of bacteriophage vB_AchrS_AchV4. To the best of our knowledge, vB_AchrS_AchV4 is the first virus isolated from Achromobacter spanius. Both vB_AchrS_AchV4 and its host, Achromobacter spanius RL_4, were isolated in Lithuania. VB_AchrS_AchV4 is a siphovirus, since it has an isometric head (64 ± 3.2 nm in diameter) and a non-contractile flexible tail (232 ± 5.4). The genome of vB_AchrS_AchV4 is a linear dsDNA molecule of 59,489 bp with a G+C content of 62.8%. It contains no tRNA genes, yet it includes 82 protein-coding genes, of which 27 have no homologues in phages. Using bioinformatics approaches, 36 vB_AchrS_AchV4 genes were given a putative function. A further four were annotated based on the results of LC-MS/MS. Comparative analyses revealed that vB_AchrS_AchV4 is a singleton siphovirus with no close relatives among known tailed phages. In summary, this work not only describes a novel and unique phage, but also advances our knowledge of genetic diversity and evolution of Achromobacter bacteriophages.
Collapse
|