1
|
Sbaffone M, Jaffrain-Rea ML, Cappabianca L, Carbonara F, Gianno F, Feola T, Ruggieri M, Zelli V, Maccarone R, Guadagni S, Clementi M, Arcella A, Esposito V, Carozza G, Martelli I, Farina AR, Mackay AR. A Study of Alternative TrkA Splicing Identifies TrkAIII as a Novel Potentially Targetable Participant in PitNET Progression. BIOLOGY 2024; 13:171. [PMID: 38534441 PMCID: PMC10968143 DOI: 10.3390/biology13030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are generally benign but comprise an aggressive, invasive, therapy-resistant, metastatic subset, underpinning a need for novel therapeutic targets. PitNETs exhibit low mutation rates but are associated with conditions linked to alternative splicing, an alternative oncogene pathway activation mechanism. PitNETs express the neurotrophin receptor TrkA, which exhibits oncogenic alternative TrkAIII splicing in other neuroendocrine tumors. We, therefore, assessed whether TrkAIII splicing represents a potential oncogenic participant in PitNETs. TrkAIII splicing was RT-PCR assessed in 53 PitNETs and TrkA isoform(s) expression and activation were assessed by confocal immunofluorescence. TrkAIII splicing was also compared to HIF1α, HIF2α, SF3B1, SRSF2, U2AF1, and JCPyV large T antigen mRNA expression, Xbp1 splicing, and SF3B1 mutation. TrkAIII splicing was detected in all invasive and most non-invasive PitNETs and was significantly elevated in invasive cases. In PitNET lineages, TrkAIII splicing was significantly elevated in invasive PIT1 PitNETs and high in invasive and non-invasive SF1 and TPIT lineages. Immunoreactivity consistent with TrkAIII activation characterized PitNET expressing TrkAIII mRNA, and invasive Pit1 PitNETs exhibited elevated HIF2α expression. TrkAIII splicing did not associate with SF3B1 mutations, altered SF3B1, SRSF2, and U2AF1 or JCPyV large T antigen expression, or Xbp1 splicing. Therefore, TrkAIII splicing is common in PitNETs, is elevated in invasive, especially PIT1 tumors, can result in intracellular TrkAIII activation, and may involve hypoxia. The data support a role for TrkAIII splicing in PitNET pathogenesis and progression and identify TrkAIII as a novel potential target in refractory PitNETs.
Collapse
Affiliation(s)
- Maddalena Sbaffone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy; (F.G.); (T.F.); (A.A.); (V.E.)
| | - Lucia Cappabianca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Francesca Carbonara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Francesca Gianno
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy; (F.G.); (T.F.); (A.A.); (V.E.)
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University of Rome, 00185 Rome, Italy
| | - Tiziana Feola
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy; (F.G.); (T.F.); (A.A.); (V.E.)
- Department of Experimental Medicine, La Sapienza University of Rome, 00185 Rome, Italy
| | - Marianna Ruggieri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Stefano Guadagni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Marco Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Antonietta Arcella
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy; (F.G.); (T.F.); (A.A.); (V.E.)
| | - Vincenzo Esposito
- Neuromed, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzilli, Italy; (F.G.); (T.F.); (A.A.); (V.E.)
- Department of Neurology and Psychiatry, La Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Ilaria Martelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Antonietta Rosella Farina
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| | - Andrew Reay Mackay
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (M.S.); (M.-L.J.-R.); (L.C.); (F.C.); (M.R.); (V.Z.); (R.M.); (M.C.); (G.C.); (I.M.); (A.R.F.)
| |
Collapse
|
2
|
Klufah F, Mobaraki G, Shi S, Marcelissen T, Alharbi RA, Mobarki M, Almalki SSR, van Roermund J, zur Hausen A, Samarska I. Human polyomaviruses JCPyV and MCPyV in urothelial cell carcinoma: a single institution experience. Front Oncol 2023; 13:1251244. [PMID: 38192628 PMCID: PMC10773619 DOI: 10.3389/fonc.2023.1251244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Objective Urothelial cell carcinoma (UCC) is the most common type of urinary bladder. JCPyV and BKPyV have been detected in the urine and tissue of urothelial cell carcinomas (UCC) in immunocompetent patients. Here, we investigated the presence of several HPyVs in UCC samples using diverse molecular techniques to study the prevalence of HPyVs in UCC. Methods A large single-institution database of urine cytology specimens (UCS; n = 22.867 UCS) has previously been searched for decoy cells (n = 30), suggesting polyomavirus infection. The available urine sediments and formalin-fixed paraffin-embedded (FFPE) tissue samples of UCC patients were tested for the presence of JCPyV-LTAg expression by immunohistochemistry (IHC) labeled with SV40-LTAg antibody (clone: PAb416) and subsequent PCR followed by sequencing. In addition, the presence of the oncogenic Merkel cell polyomavirus (MCPyV) and the presence of human polyomavirus 6 (HPyV6) and 7 (HPyV7) DNA were tested with DNA PCR or IHC. Results Of the 30 patients harboring decoy cells, 14 were diagnosed with UCC of the urinary bladder (14/30; 46.6%) before presenting with decoy cells in the urine. The SV40-LTAg IHC was positive in all 14 UCC urine sediments and negative in the FFPE tissues. JCPyV-DNA was identified in all five available UCS and in three FFPE samples of UCC (three of 14; 21.4%). Two UCC cases were positive for MCPyV-DNA (two of 14; 14.3%), and one of them showed protein expression by IHC (one of 14; 7.1%). All specimens were HPyV6 and HPyV7 negative. Conclusion Our findings show the presence of JCPyV in the urine and UCC of immunocompetent patients. Moreover, MCPyV was detected in two UCC cases. In total, five UCC cases showed the presence of either JCPyV or MCPyV. The evidence here supports the hypothesis that these viruses might sporadically be associated with UCC. Further studies are needed to confirm the relevance of JCPyV or MCPyV as a possible risk factor for UCC development.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Tom Marcelissen
- Department of Urology, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mousa Mobarki
- Pathology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Shaia Saleh R. Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Joep van Roermund
- Department of Urology, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
3
|
Kato Y, Yoshida S, Kato T. Missing pieces of the pituitary puzzle: participation of extra-adenohypophyseal placode-lineage cells in the adult pituitary gland. Cell Tissue Res 2023; 394:487-496. [PMID: 37650920 DOI: 10.1007/s00441-023-03829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
The pituitary gland is a major endocrine tissue composing of two distinct entities, the adenohypophysis (anterior pituitary, cranial placode origin) and the neurohypophysis (posterior pituitary, neural ectoderm origin), and plays important roles in maintaining vital homeostasis. This tissue is maintained by a slow, consistent cell-renewal system of adult stem/progenitor cells. Recent accumulating evidence shows that neural crest-, head mesenchyme-, and endoderm lineage cells invade during pituitary development and contribute to the maintenance of the adult pituitary gland. Based on these novel observations, this article discusses whether these lineage cells are involved in pituitary organogenesis, maintenance, regeneration, dysplasia, or tumors.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
4
|
Butic AB, Spencer SA, Shaheen SK, Lukacher AE. Polyomavirus Wakes Up and Chooses Neurovirulence. Viruses 2023; 15:2112. [PMID: 37896889 PMCID: PMC10612099 DOI: 10.3390/v15102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
JC polyomavirus (JCPyV) is a human-specific polyomavirus that establishes a silent lifelong infection in multiple peripheral organs, predominantly those of the urinary tract, of immunocompetent individuals. In immunocompromised settings, however, JCPyV can infiltrate the central nervous system (CNS), where it causes several encephalopathies of high morbidity and mortality. JCPyV-induced progressive multifocal leukoencephalopathy (PML), a devastating demyelinating brain disease, was an AIDS-defining illness before antiretroviral therapy that has "reemerged" as a complication of immunomodulating and chemotherapeutic agents. No effective anti-polyomavirus therapeutics are currently available. How depressed immune status sets the stage for JCPyV resurgence in the urinary tract, how the virus evades pre-existing antiviral antibodies to become viremic, and where/how it enters the CNS are incompletely understood. Addressing these questions requires a tractable animal model of JCPyV CNS infection. Although no animal model can replicate all aspects of any human disease, mouse polyomavirus (MuPyV) in mice and JCPyV in humans share key features of peripheral and CNS infection and antiviral immunity. In this review, we discuss the evidence suggesting how JCPyV migrates from the periphery to the CNS, innate and adaptive immune responses to polyomavirus infection, and how the MuPyV-mouse model provides insights into the pathogenesis of JCPyV CNS disease.
Collapse
Affiliation(s)
| | | | | | - Aron E. Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA; (A.B.B.); (S.A.S.); (S.K.S.)
| |
Collapse
|
5
|
Rocchi A, Sariyer IK, Berger JR. Revisiting JC virus and progressive multifocal leukoencephalopathy. J Neurovirol 2023; 29:524-537. [PMID: 37659983 DOI: 10.1007/s13365-023-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
Since its definition 65 years ago, progressive multifocal leukoencephalopathy (PML) has continued to devastate a growing population of immunosuppressed patients despite major advances in our understanding of the causative JC virus (JCV). Unless contained by the immune system, JCV lyses host oligodendrocytes collateral to its life cycle, leading to demyelination, neurodegeneration, and death. Novel treatments have stagnated in the absence of an animal model while current antiviral agents fail to address the now ubiquitous polyomavirus. In this review, we highlight the established pathogenesis by which JCV infection progresses to PML, highlighting major challenges that must be overcome to eliminate the underlying virus and, therefore, the debilitating disease.
Collapse
Affiliation(s)
- Angela Rocchi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Passerini S, Prezioso C, Prota A, Babini G, Bargiacchi L, Bartolini D, Moens U, Antonelli M, Pietropaolo V. Detection of human neurotropic JCPyV DNA sequence in pediatric anaplastic xanthoastrocytoma. J Neurovirol 2023; 29:232-236. [PMID: 37097595 DOI: 10.1007/s13365-023-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023]
Abstract
Due to its peculiar histopathological findings, pleomorphic xanthoastrocytoma (PXA), a rare cerebral tumor of young adults with a slow growth and a good prognosis, resembles to the lytic phase of progressive multifocal leukoencephalopathy, a fatal neurodegenerative disease caused by JC polyomavirus (JCPyV). Therefore, the presence of JCPyV DNA was examined in an 11-year-old child with xanthoastrocytoma, WHO grade 3, by quantitative PCR (qPCR) and nested PCR (nPCR) using primers amplifying sequences encoding the N- and C-terminal region of large T antigen (LTAg), the non-coding control region (NCCR), and viral protein 1 (VP1) DNA. The expression of transcripts from LTAg and VP1 genes was also evaluated. In addition, viral microRNAs' (miRNAs) expression was investigated. Cellular p53 was also searched at both DNA and RNA level. qPCR revealed the presence of JCPyV DNA with a mean value of 6.0 × 104 gEq/mL. nPCR gave a positive result for the 5' region of the LTAg gene and the NCCR, whereas 3' end LTAg and VP1 DNA sequences were not amplifiable. Only LTAg transcripts of 5' end were found whereas VP1 gene transcript was undetectable. Although in most cases, either Mad-1 or Mad-4 NCCRs have been identified in association with JCPyV-positive human brain neoplasms, the archetype NCCR structure was observed in the patient's sample. Neither viral miRNA miR-J1-5p nor p53 DNA and RNA were detected. Although the expression of LTAg supports the possible role of JCPyV in PXA, further studies are warranted to better understand whether the genesis of xanthoastrocytoma could depend on the transformation capacity of LTAg by Rb sequestration.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, P.1e Aldo Moro, 5, 00185, Rome, Italy
| | - Carla Prezioso
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, IRCCS San Raffaele Roma, Rome, Italy
| | - Annalisa Prota
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, P.1e Aldo Moro, 5, 00185, Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, P.1e Aldo Moro, 5, 00185, Rome, Italy
| | - Lavinia Bargiacchi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | | | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, P.1e Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
8
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
9
|
Zheng HC, E Y, Cui ZG, Zhao S, Zhang Y. The Oncogenic Roles of JC Virus T Antigen in Breast Carcinogenesis. Front Mol Biosci 2021; 8:687444. [PMID: 34476239 PMCID: PMC8406522 DOI: 10.3389/fmolb.2021.687444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: JC virus (JCV) infects 80–90% of the population and results in progressive multifocal leukoencephalopathy upon immunodeficiency. The study aimed to pathologically clarify the oncogenic roles of T antigen in human breast cancers. Methods: Breast cancer, dysplasia, and normal tissues were examined for T antigen of JCV by nested and real-time PCR. The positive rate or copy number of T antigen was compared with clinicopathological parameters of breast cancer. JCV existence was morphologically detected by immunohistochemistry and in situ PCR. T antigen was examined by Western blot using frozen samples of breast cancer and paired normal tissues. Results: According to nested PCR, the positive rate of breast ductal or lobular carcinoma was lower than that of normal tissue (p < 0.05). T antigen existence was negatively correlated with E-cadherin expression and triple-negative breast cancer (p < 0.05), but positively correlated with lymph node metastasis and estrogen receptor and progestogen receptor expression (p < 0.05). Quantitative PCR showed that JCV copies were gradually decreased from normal, dysplasia to cancer tissues (p < 0.05). JCV T antigen copy number was lower in ductal adenocarcinoma than in normal tissue (p < 0.05), in line with in situ PCR and immunohistochemistry. JCV copies were negatively correlated with tumor size and E-cadherin expression (p < 0.05), but positively correlated with G grading of breast cancer (p < 0.05). Western blot also indicated weaker T antigen expression in breast cancer than normal tissues (p < 0.05). Conclusion: JCV T antigen might play an important role in breast carcinogenesis. It can be employed as a molecular marker for the differentiation and aggressive behaviors of breast cancer.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ying E
- Department of Oncology, Liaoning Cancer Hospital, Shenyang, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Shuang Zhao
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|