1
|
Tan L, Lu L, Sun W, Zhang X, Liu Y, Xiang Y, Yan H. Identification and validation of qRT-PCR reference genes for analyzing grape infection with gray mold. BMC Genomics 2024; 25:997. [PMID: 39448910 PMCID: PMC11515470 DOI: 10.1186/s12864-024-10889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Grapes are highly valued for their nutritional and economic benefits, and have been widely studied for their biological attributes such as fruit development, quality formation, and stress resistance. One significant threat to grape quality is gray mold, caused by Botrytis cinerea, which can infect the flowers, fruits, leaves, and stems. The quantitative real-time PCR (qRT-PCR), known for its high sensitivity and quantitative accuracy, is an essential tool for analyzing gene expression related to the pathogenesis of gray mold, thereby providing deeper insights into the disease. RESULT In this study, we aim to identify stable internal reference genes crucial for accurate gene expression analysis via qRT-PCR. Utilizing transcriptome data from grapes under various disease stresses, we identified twelve candidate reference genes with consistently high expression levels. The stability of these genes was assessed through delta-CT, geNorm, NormFinder, BestKeeper, and RefFinder analyses after establishing the cycling thresholds (Ct) in different grape varieties treated with Botrytis cinerea. CONCLUSIONS Our findings reveal that VIT-17s0000g02750 and VIT-06s0004g04280 exhibit stable expression and are suitable as new reference genes. This foundational work supports further research into the molecular mechanisms of grape biological processes.
Collapse
Affiliation(s)
- Lina Tan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Lijuan Lu
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wen Sun
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xinyuan Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yanglin Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
2
|
Lameront P, Shabanian M, Currie LMJ, Fust C, Li C, Clews A, Meng B. Elucidating the Subcellular Localization of GLRaV-3 Proteins Encoded by the Unique Gene Block in N. benthamiana Suggests Implications on Plant Host Suppression. Biomolecules 2024; 14:977. [PMID: 39199365 PMCID: PMC11352578 DOI: 10.3390/biom14080977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a formidable threat to the stability of the global grape and wine industries. It is the primary etiological agent of grapevine leafroll disease (GLD) and significantly impairs vine health, fruit quality, and yield. GLRaV-3 is a member of the genus Ampelovirus, Closteroviridae family. Viral genes within the 3' proximal unique gene blocks (UGB) remain highly variable and poorly understood. The UGBs of Closteroviridae viruses include diverse open reading frames (ORFs) that have been shown to contribute to viral functions such as the suppression of the host RNA silencing defense response and systemic viral spread. This study investigates the role of GLRaV-3 ORF8, ORF9, and ORF10, which encode the proteins p21, p20A, and p20B, respectively. These genes represent largely unexplored facets of the GLRaV-3 genome. Here, we visualize the subcellular localization of wildtype and mutagenized GLRaV-3 ORFs 8, 9, and 10, transiently expressed in Nicotiana benthamiana. Our results indicate that p21 localizes to the cytosol, p20A associates with microtubules, and p20B is trafficked into the nucleus to carry out the suppression of host RNA silencing. The findings presented herein provide a foundation for future research aimed at the characterization of the functions of these ORFs. In the long run, it would also facilitate the development of innovative strategies to understand GLRaV-3, mitigate its spread, and impacts on grapevines and the global wine industry.
Collapse
Affiliation(s)
- Patrick Lameront
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.S.); (L.M.J.C.); (C.F.); (C.L.); (A.C.); (B.M.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Mostert I, Bester R, Burger JT, Maree HJ. Investigating Protein-Protein Interactions Between Grapevine Leafroll-Associated Virus 3 and Vitis vinifera. PHYTOPATHOLOGY 2023; 113:1994-2005. [PMID: 37311734 DOI: 10.1094/phyto-03-23-0107-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grapevine leafroll disease (GLD) is a globally important disease that affects the metabolic composition and biomass of grapes, leading to a reduction in grape yield and quality of wine produced. Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causal agent for GLD. This study aimed to identify protein-protein interactions between GLRaV-3 and its host. A yeast two-hybrid (Y2H) library was constructed from Vitis vinifera mRNA and screened against GLRaV-3 open reading frames encoding structural proteins and those potentially involved in systemic spread and silencing of host defense mechanisms. Five interacting protein pairs were identified, three of which were demonstrated in planta. The minor coat protein of GLRaV-3 was shown to interact with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 02, a protein involved in primary carbohydrate metabolism and the biosynthesis of aromatic amino acids. Interactions were also identified between GLRaV-3 p20A and an 18.1-kDa class I small heat shock protein, as well as MAP3K epsilon protein kinase 1. Both proteins are involved in the response of plants to various stressors, including pathogen infections. Two additional proteins, chlorophyll a-b binding protein CP26 and a SMAX1-LIKE 6 protein, were identified as interacting with p20A in yeast but these interactions could not be demonstrated in planta. The findings of this study advance our understanding of the functions of GLRaV-3-encoded proteins and how the interaction between these proteins and those of V. vinifera could lead to GLD.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
- Citrus Research International, Stellenbosch 7600, South Africa
| | - Johan T Burger
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
- Citrus Research International, Stellenbosch 7600, South Africa
| |
Collapse
|
4
|
Galvan FER, Pavlick R, Trolley G, Aggarwal S, Sousa D, Starr C, Forrestel E, Bolton S, Alsina MDM, Dokoozlian N, Gold KM. Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy. PHYTOPATHOLOGY 2023; 113:1439-1446. [PMID: 37097472 DOI: 10.1094/phyto-01-23-0030-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The U.S. wine and grape industry loses $3B annually due to viral diseases including grapevine leafroll-associated virus complex 3 (GLRaV-3). Current detection methods are labor-intensive and expensive. GLRaV-3 has a latent period in which the vines are infected but do not display visible symptoms, making it an ideal model to evaluate the scalability of imaging spectroscopy-based disease detection. The NASA Airborne Visible and Infrared Imaging Spectrometer Next Generation was deployed to detect GLRaV-3 in Cabernet Sauvignon grapevines in Lodi, CA in September 2020. Foliage was removed from the vines as part of mechanical harvest soon after image acquisition. In September of both 2020 and 2021, industry collaborators scouted 317 hectares on a vine-by-vine basis for visible viral symptoms and collected a subset for molecular confirmation testing. Symptomatic grapevines identified in 2021 were assumed to have been latently infected at the time of image acquisition. Random forest models were trained on a spectroscopic signal of noninfected and GLRaV-3 infected grapevines balanced with synthetic minority oversampling of noninfected and GLRaV-3 infected grapevines. The models were able to differentiate between noninfected and GLRaV-3 infected vines both pre- and postsymptomatically at 1 to 5 m resolution. The best-performing models had 87% accuracy distinguishing between noninfected and asymptomatic vines, and 85% accuracy distinguishing between noninfected and asymptomatic + symptomatic vines. The importance of nonvisible wavelengths suggests that this capacity is driven by disease-induced changes to plant physiology. The results lay a foundation for using the forthcoming hyperspectral satellite Surface Biology and Geology for regional disease monitoring in grapevine and other crop species. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Ryan Pavlick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Cabaleiro C, Pesqueira AM, García-Berrios JJ. Assessment of Symptoms of Grapevine Leafroll Disease and Relationship with Yield and Quality of Pinot Noir Grape Must in a 10-Year Study Period. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112127. [PMID: 37299106 DOI: 10.3390/plants12112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Grapevine leafroll disease (GLD) is caused by one or more of the Grapevine leafroll-associated viruses (GLRaVs). GLD's symptoms are expected to be evident in indicator cultivars, regardless of the GLRaV(s) involved. In the present study, disease incidence (I) and severity (S), symptoms before veraison (Sy < V), a disease severity index (DSI) and an earliness index (EI) (2013-2022) were recorded in order to examine the factors affecting the evolution of GLD in Pinot noir graft inoculated with scions infected with GLRaV-3 that, in origin, showed a diversity of GLD symptoms. Strong correlations between I and S (r = 0.94) and between Sy < V and EI (r = 0.94) were observed; early symptoms proved good predictors of incidence and severity after veraison and of yield and sugar content of the must. The environmental conditions and time after infection did not modify the wide range of symptoms (I: 0-81.5%; S: 0.1-4) that corresponded with the variation in losses (<0-88% for yield and <0-24% for sugar content). With all other factors being constant, the significant differences between plants were mainly due to the GLRaVs present. Plants infected with some GLRaV-3 isolates always had mild symptoms or remained asymptomatic 10 years after grafting but remained a source of infection for GLRaV vectors.
Collapse
Affiliation(s)
- Cristina Cabaleiro
- Escuela Politécnica Superior de Ingeniería, Departamento de Producción Vegetal y Proyectos de Ingeniería, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Ana M Pesqueira
- Escuela Politécnica Superior de Ingeniería, Departamento de Producción Vegetal y Proyectos de Ingeniería, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Julián J García-Berrios
- Escuela Politécnica Superior de Ingeniería, Departamento de Producción Vegetal y Proyectos de Ingeniería, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
7
|
Tarquini G, Dall'Ara M, Ermacora P, Ratti C. Traditional Approaches and Emerging Biotechnologies in Grapevine Virology. Viruses 2023; 15:v15040826. [PMID: 37112807 PMCID: PMC10142720 DOI: 10.3390/v15040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Environmental changes and global warming may promote the emergence of unknown viruses, whose spread is favored by the trade in plant products. Viruses represent a major threat to viticulture and the wine industry. Their management is challenging and mostly relies on prophylactic measures that are intended to prevent the introduction of viruses into vineyards. Besides the use of virus-free planting material, the employment of agrochemicals is a major strategy to prevent the spread of insect vectors in vineyards. According to the goal of the European Green Deal, a 50% decrease in the use of agrochemicals is expected before 2030. Thus, the development of alternative strategies that allow the sustainable control of viral diseases in vineyards is strongly needed. Here, we present a set of innovative biotechnological tools that have been developed to induce virus resistance in plants. From transgenesis to the still-debated genome editing technologies and RNAi-based strategies, this review discusses numerous illustrative studies that highlight the effectiveness of these promising tools for the management of viral infections in grapevine. Finally, the development of viral vectors from grapevine viruses is described, revealing their positive and unconventional roles, from targets to tools, in emerging biotechnologies.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agricultural, Environmental, Food and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| | - Paolo Ermacora
- Department of Agricultural, Environmental, Food and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
8
|
Tatineni S, Hein GL. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies. PHYTOPATHOLOGY 2023; 113:117-141. [PMID: 36095333 DOI: 10.1094/phyto-05-22-0167-rvw] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
9
|
Lee J, Rennaker CD, Thompson BD, Dahan J, Karasev AV. Idaho ‘cabernet sauvignon’ grape composition altered by grapevine leafroll-associated virus 3. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Grapevine Leafroll-Associated Virus 3 in Single and Mixed Infections Triggers Changes in the Oxidative Balance of Four Grapevine Varieties. Int J Mol Sci 2022; 24:ijms24010008. [PMID: 36613457 PMCID: PMC9819915 DOI: 10.3390/ijms24010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
With the aim to characterize changes caused by grapevine leafroll-associated virus 3 (GLRaV-3) singly or in coinfection with other viruses and to potentially determine genotype-specific or common markers of viral infection, thirty-six parameters, including nutrient status, oxidative stress parameters, and primary metabolism as well as symptoms incidence were investigated in 'Cabernet Franc,' 'Merlot,' 'Pinot Noir,' and 'Tribidrag' grapevine varieties. Host responses were characterized by changes in cellular redox state rather than disturbances in nutrient status and primary metabolic processes. Superoxide dismutase, hydrogen peroxide, and proteins were drastically affected regardless of the type of isolate, the host, and the duration of the infection, so they present cellular markers of viral infection. No clear biological pattern could be ascertained for each of the GLRaV-3 genotypes. There is a need to provide a greater understanding of virus epidemiology in viticulture due to the increasing natural disasters and climate change to provide for global food production security. Finding grape varieties that will be able to cope with those changes can aid in this task. Among the studied grapevine varieties, autochthonous 'Tribidrag' seems to be more tolerant to symptoms development despite numerous physiological changes caused by viruses.
Collapse
|
11
|
Čarija M, Černi S, Stupin-Polančec D, Radić T, Gaši E, Hančević K. Grapevine Leafroll-Associated Virus 3 Replication in Grapevine Hosts Changes through the Dormancy Stage. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233250. [PMID: 36501290 PMCID: PMC9737106 DOI: 10.3390/plants11233250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/27/2023]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is a graft-transmissible virus present in every viticultural region of the world and poses a large threat to grapevine production. Frequent coinfections with other viruses, the large number of grapevine varieties, the complexity of processes involved in plant response to virus infection, and the lack of studies on GLRaV-3 replication limit our knowledge of GLRaV-3 damaging effects and their background. In this study, five different inocula, one containing GLRaV-3 and others containing GLRaV-3 in combination with different grapevine viruses were green grafted to 52 different grapevine plants of four varieties to analyze the influence of the phenological stage and virus composition on GLRaV-3 replication. Relative concentration analysis by quantitative PCR conducted over a 16-month period revealed that other viruses as well as plant stage had a significant effect on GLRaV-3 replication and symptoms expression. The replication was most pronounced in the deep dormancy stage at the beginning of the infection, and the least at the exit of the dormancy stage. This study brings new insight into GLRaV-3 replication and discusses about viral interactions in one of the most economically important perennial plants, the grapevine.
Collapse
Affiliation(s)
- Mate Čarija
- Institute for Adriatic Crops, 21000 Split, Croatia
| | - Silvija Černi
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - Emanuel Gaši
- Institute for Adriatic Crops, 21000 Split, Croatia
| | | |
Collapse
|
12
|
Shvets D, Sandomirsky K, Porotikova E, Vinogradova S. Metagenomic Analysis of Ampelographic Collections of Dagestan Revealed the Presence of Two Novel Grapevine Viruses. Viruses 2022; 14:2623. [PMID: 36560627 PMCID: PMC9781968 DOI: 10.3390/v14122623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, we analyzed the virome of 73 grape samples from two Dagestan ampelographic collections in Russia using high-throughput sequencing of total RNAs. Fourteen viruses and four viroids were identified, with one to eleven of them detected in each plant. For the first time in Russia, we identified grapevine leafroll-associated virus 7 and grapevine Kizil Sapak virus. A total of 206 genomes of viruses and viroids were obtained, and their phylogenetic analysis was carried out. The de novo assembly and tblastx analysis allowed us to obtain contigs of a novel (+) ssRNA genome of a plant virus from the genus Umbravirus, which was tentatively named grapevine umbra-like virus (GULV), as well as contigs of a novel dsDNA pararetrovirus from the genus Caulimovirus, which was tentatively named grapevine pararetrovirus (GPRV). Complete genomes of these viruses were obtained and used for Sequence Demarcation Tool (SDT) analysis and phylogeny studies. GULV and GPRV were detected in 16 and 33 germplasm samples from the Dagestan collections, respectively.
Collapse
Affiliation(s)
| | | | | | - Svetlana Vinogradova
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, 119071 Moscow, Russia
| |
Collapse
|
13
|
Song Y, Hanner RH, Meng B. Transcriptomic Analyses of Grapevine Leafroll-Associated Virus 3 Infection in Leaves and Berries of 'Cabernet Franc'. Viruses 2022; 14:v14081831. [PMID: 36016453 PMCID: PMC9415066 DOI: 10.3390/v14081831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting global grape and wine production. GLRaV-3 is the chief agent associated with grapevine leafroll disease (GLRD), the most prevalent and economically destructive grapevine viral disease complex. Response of grapevine to GLRaV-3 infection at the gene expression level is poorly characterized, limiting the understanding of GLRaV-3 pathogenesis and viral-associated symptom development. In this research, we used RNA-Seq to profile the changes in global gene expression of Cabernet franc, a premium red wine grape, analyzing leaf and berry tissues at three key different developmental stages. We have identified 1457 differentially expressed genes (DEGs) in leaves and 1181 DEGs in berries. The expression profiles of a subset of DEGs were validated through RT-qPCR, including those involved in photosynthesis (VvPSBP1), carbohydrate partitioning (VvSUT2, VvHT5, VvGBSS1, and VvSUS), flavonoid biosynthesis (VvUFGT, VvLAR1, and VvFLS), defense response (VvPR-10.3, and VvPR-10.7), and mitochondrial activities (ETFB, TIM13, and NDUFA1). GLRaV-3 infection altered source-sink relationship between leaves and berries. Photosynthesis and photosynthate assimilation were inhibited in mature leaves while increased in young berries. The expression of genes involved in anthocyanin biosynthesis increased in GLRaV-3-infected leaves, correlating with interveinal tissue reddening, a hallmark of GLRD symptoms. Notably, we identified changes in gene expression that suggest a compromised sugar export and increased sugar retrieval in GLRaV-3-infected leaves. Genes associated with mitochondria were down-regulated in both leaves and berries of Cabernet franc infected with GLRaV-3. Results of the present study suggest that GLRaV-3 infection may disrupt mitochondrial function in grapevine leaves, leading to repressed sugar export and accumulation of sugar in mature leaf tissues. The excessive sugar accumulation in GLRaV-3-infected leaves may trigger downstream GLRD symptom development and negatively impact berry quality. We propose a working model to account for the molecular events underlying the pathogenesis of GLRaV-3 and symptom development.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
14
|
Transmission of Grapevine Ampelo- and Vitiviruses by the Bohemian Mealybug Heliococcus bohemicus Šulc (Hemiptera: Pseudococcidae). Viruses 2022; 14:v14071430. [PMID: 35891410 PMCID: PMC9319757 DOI: 10.3390/v14071430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine-infecting ampelo- and vitiviruses are transmitted by several scale insect species, including the Bohemian mealybug, Heliococcus bohemicus Šulc. Virus infectivity experiments were performed with this species to study the transmission ability of natural populations living in infected vineyards in Alsace, France. Mealybugs were sampled on vines infected by grapevine leafroll-associated viruses (GLRaV-1, -2, and -3) and by grapevine virus A (GVA), either alone or in combinations. Out of six natural populations tested, only one, located at Bennwihr, was able to transmit GLRaV-1 and -3 to healthy vines, though with low transmission rates (1.6 and 11.8%, respectively). Mealybugs from Bennwihr were also able to transmit GLRaV-3 from grapevines of another location where H. bohemicus was not a vector. Conversely, mealybugs from two other locations did not transmit any virus acquired from infected grapevines at Bennwihr. These results suggest differences in vector ability between H. bohemicus populations. Moreover, laboratory experiments were developed to estimate the minimal acquisition and inoculation access periods (AAP and IAP, respectively) for virus transmission of GLRaV-1 and -3, and GVA. First instar nymphs transmitted GLRaV-1 after 6 h AAP, GLRaV-3 and GVA together after 1 h AAP, and the three viruses after only 1 h IAP, supporting a semi-persistent mode of transmission. Second instar nymphs fed on multi-infected grapevine for 72 h then starved or fed on potatoes tested positive by RT-PCR for GLRaV-1 and -3 after up to 35 and 40 days, respectively, contrasting with the short retention times generally observed for mealybugs. These findings provide new knowledge of the vector ability of H. bohemicus.
Collapse
|
15
|
Zhang C, Wang X, Li H, Wang J, Zeng Q, Huang W, Huang H, Xie Y, Yu S, Kan Q, Wang Q, Cheng Y. GLRaV-2 protein p24 suppresses host defenses by interaction with a RAV transcription factor from grapevine. PLANT PHYSIOLOGY 2022; 189:1848-1865. [PMID: 35485966 PMCID: PMC9237672 DOI: 10.1093/plphys/kiac181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Grapevine leafroll-associated virus 2 (GLRaV-2) is a prevalent virus associated with grapevine leafroll disease, but the molecular mechanism underlying GLRaV-2 infection is largely unclear. Here, we report that 24-kDa protein (p24), an RNA-silencing suppressor (RSS) encoded by GLRaV-2, promotes GLRaV-2 accumulation via interaction with the B3 DNA-binding domain of grapevine (Vitis vinifera) RELATED TO ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 (VvRAV1), a transcription factor belonging to the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) superfamily. Salicylic acid-inducible VvRAV1 positively regulates the grapevine pathogenesis-related protein 1 (VvPR1) gene by directly binding its promoter, indicating that VvRAV1 may function in the regulation of host basal defense responses. p24 hijacks VvRAV1 to the cytoplasm and employs the protein to sequester 21-nt double-stranded siRNA together, thereby enhancing its own RSS activity. Moreover, p24 enters the nucleus via interaction with VvRAV1 and weakens the latter's binding affinity to the VvPR1 promoter, leading to decreased expression of VvPR1. Our results provide a mechanism by which a viral RSS interferes with both the antiviral RNA silencing and the AP2/ERF-mediated defense responses via the targeting of one specific host factor.
Collapse
Affiliation(s)
| | - Xianyou Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Hanwei Li
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Jinying Wang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Zeng
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Wenting Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Haoqiang Huang
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Yinshuai Xie
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Shangzhen Yu
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qing Kan
- Department of Pomology/Lab of Stress Physiology and Molecular Biology for Tree Fruits, Key Lab of Beijing Municipality, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
16
|
Grapevine Leafroll-Associated Virus 3 Genotype Influences Foliar Symptom Development in New Zealand Vineyards. Viruses 2022; 14:v14071348. [PMID: 35891330 PMCID: PMC9316759 DOI: 10.3390/v14071348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Grapevine leafroll disease (GLD) constrains wine production worldwide. In New Zealand, the main causal agent of GLD is grapevine leafroll-associated virus 3 (GLRaV-3). To control GLD, an integrated management program is used and includes removing (roguing) GLRaV-3-infected vines from the vineyard. The classical foliar symptoms from virus-infected red-berry cultivars are leaves with dark red intervein, green veins, and downward rolling of margins. Growers use these phenotypic cues to undertake visual symptom identification (VSI) for GLD. However, the influence of the known large genetic variation among GLRaV-3 isolates on the foliar symptoms from different grapevine cultivars remains undescribed, especially in cool-climate growing environments, such as New Zealand. Over three vintages (2015, 2016, and 2017), VSI for GLD was undertaken at three field sites in New Zealand (Auckland, Hawke’s Bay, and Marlborough), each including four cultivars (Merlot, Pinot noir, Sauvignon blanc, and Pinot gris) infected with three GLRaV-3 genotypes (Groups I, VI, and X) or GLRaV-3-uninfected control plants. Throughout this study, no visual symptoms were observed on white-berry cultivars infected with GLRaV-3. For red-berry cultivars, the greatest variability in observed foliar symptoms among regional study sites, cultivars, and GLRaV-3 genotypes was observed early in the growing season. In particular, Group X had significantly delayed symptom expression across all three sites compared with Groups I and VI. As the newly infected, young vines matured in years 2 and 3, the GLRaV-3 genotype, cultivar, region, and environmental conditions had minimal influence on the accuracy of VSI, with consistently high (>95%) within-vintage identification by the end of each vintage. The results from this study strongly support the use of VSI for the GLD management of red-berry cultivar grapevines, Merlot and Pinot noir, as a reliable and cost-effective tool against GLD.
Collapse
|
17
|
Song Y, Hanner RH, Meng B. Genome-wide screening of novel RT-qPCR reference genes for study of GLRaV-3 infection in wine grapes and refinement of an RNA isolation protocol for grape berries. PLANT METHODS 2021; 17:110. [PMID: 34711253 PMCID: PMC8554853 DOI: 10.1186/s13007-021-00808-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Grapevine, as an essential fruit crop with high economic values, has been the focus of molecular studies in diverse areas. Two challenges exist in the grapevine research field: (i) the lack of a rapid, user-friendly and effective RNA isolation protocol for mature dark-skinned berries and, (ii) the lack of validated reference genes that are stable for quantification of gene expression across desired experimental conditions. Successful isolation of RNA with sufficient yield and quality is essential for downstream analyses involving nucleic acids. However, ripe berries of dark-skinned grape cultivars are notoriously challenging in RNA isolation due to high contents of polyphenolics, polysaccharides, RNase and water. RESULTS We have optimized an RNA isolation protocol through modulating two factors at the lysis step that could impact results of RNA isolation - 2-ME concentration and berry mass. By finding the optimal combination among the two factors, our refined protocol was highly effective in isolating total RNA with high yield and quality from whole mature berries of an array of dark-skinned wine grape cultivars. Our protocol takes a much shorter time to complete, is highly effective, and eliminates the requirement for hazardous organic solvents. We have also shown that the resulting RNA preps were suitable for multiple downstream analyses, including the detection of viruses and amplification of grapevine genes using reverse transcription-polymerase chain reaction (RT-PCR), gene expression analysis via quantitative reverse transcription PCR (RT-qPCR), and RNA Sequencing (RNA-Seq). By using RNA-Seq data derived from Cabernet Franc, we have identified seven novel reference gene candidates (CYSP, NDUFS8, YLS8, EIF5A2, Gluc, GDT1, and EF-Hand) with stable expression across two tissue types, three developmental stages and status of infection with grapevine leafroll-associated virus 3 (GLRaV-3). We evaluated the stability of these candidate genes together with two conventional reference genes (actin and NAD5) using geNorm, NormFinder and BestKeeper. We found that the novel reference gene candidates outperformed both actin and NAD5. The three most stable reference genes were CYSP, NDUFS8 and YSL8, whereas actin and NAD5 were among the least stable. We further tested if there would be a difference in RT-qPCR quantification results when the most stable (CYSP) and the least stable (actin and NAD5) genes were used for normalization. We concluded that both actin and NAD5 led to erroneous RT-qPCR results in determining the statistical significance and fold-change values of gene expressional change. CONCLUSIONS We have formulated a rapid, safe and highly effective protocol for isolating RNA from recalcitrant berry tissue of wine grapes. The resulting RNA is of high quality and suitable for RT-qPCR and RNA-Seq. We have identified and validated a set of novel reference genes based on RNA-Seq dataset. We have shown that these new reference genes are superior over actin and NAD5, two of the conventional reference genes commonly used in early studies.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada.
| | - Robert H Hanner
- Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON, N1G2W1, Canada
| |
Collapse
|
18
|
Young RG, Gill R, Gillis D, Hanner RH. Molecular Acquisition, Cleaning and Evaluation in R (MACER) - A tool to assemble molecular marker datasets from BOLD and GenBank. Biodivers Data J 2021; 9:e71378. [PMID: 34594153 PMCID: PMC8443542 DOI: 10.3897/bdj.9.e71378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Molecular sequence data is an essential component for many biological fields of study. The strength of these data is in their ability to be centralised and compared across research studies. There are many online repositories for molecular sequence data, some of which are very large accumulations of varying data types like NCBI’s GenBank. Due to the size and the complexity of the data in these repositories, challenges arise in searching for data of interest. While data repositories exist for molecular markers, taxa and other specific research interests, repositories may not contain, or be suitable for, more specific applications. Manually accessing, searching, downloading, accumulating, dereplicating and cleaning data to construct project-specific datasets is time-consuming. In addition, the manual assembly of datasets presents challenges with reproducibility. Here, we present the MACER package to assist researchers in assembling molecular datasets and provide reproducibility in the process.
Collapse
Affiliation(s)
- Robert G Young
- University of Guelph, Guelph, Canada University of Guelph Guelph Canada
| | - Rekkab Gill
- University of Guelph, Guelph, Canada University of Guelph Guelph Canada
| | - Daniel Gillis
- University of Guelph, Guelph, Canada University of Guelph Guelph Canada
| | - Robert H Hanner
- University of Guelph, Guelph, Canada University of Guelph Guelph Canada
| |
Collapse
|