1
|
Yu C, Yu M, Ma R, Wei S, Jin M, Jiao N, Zheng Q, Zhang R, Feng X. A novel Alteromonas phage with tail fiber containing six potential iron-binding domains. Microbiol Spectr 2025; 13:e0093424. [PMID: 39565130 PMCID: PMC11705849 DOI: 10.1128/spectrum.00934-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Viruses play a vital role in regulating microbial communities, contributing to biogeochemical cycles of carbon, nitrogen, and essential metals. Alteromonas is widespread and plays an essential role in marine microbial ecology. However, there is limited knowledge about the interactions of Alteromonas and its viruses (alterophages). This study isolated a novel podovirus, vB_AmeP-R22Y (R22Y), which infects Alteromonas marina SW-47 (T). Phylogenetic analysis suggested that R22Y represented a novel viral genus within the Schitoviridae family. R22Y exhibited a broad host range and a relatively large burst size, exerting an important impact on the adaptability and dynamics of host populations. Two auxiliary metabolic genes, encoding Acyl carrier protein and AAA domain-containing protein, were predicted in R22Y, which may potentially assist in host fatty acid metabolism and VB12 biosynthesis, respectively. Remarkably, the prediction of the R22Y tail fiber structure revealed six conserved histidine residues (HxH motifs) that could potentially bind iron ions, suggesting that alterophages may function as organic iron-binding ligands in the marine environment. Our isolation and characterization of R22Y complements the Trojan Horse hypothesis, proposes the possible role of alterophages for marine iron biogeochemical cycling, and provides new insights into phage-host interactions in the iron-limited ocean.IMPORTANCEIron (Fe), as an essential micronutrient, is often a limiting factor for microbial growth in marine ecosystems. The Trojan Horse hypothesis suggests that iron in the phage tail fibers is recognized by the host's siderophore-bound iron receptor, enabling the phage to attach and initiate infection. The potential role of phages as iron-binding ligands has significant implications for oceanic trace metal biogeochemistry. In this study, we isolated a new phage R22Y with the potential to bind iron ions, using Alteromonas, a major siderophore producer, as the host. The tail fiber structure of R22Y exhibits six conserved HxH motifs, suggesting that each phage could potentially bind up to 36 iron ions. R22Y may contribute to colloidal organically complexed dissolved iron in the marine environment. This finding provides further insights into the Trojan Horse hypothesis, suggesting that alterophages may act as natural iron-binding ligands in the marine environment.
Collapse
Affiliation(s)
- Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meishun Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Shuzhen Wei
- School of Ocean and Earth Science, Tongji University, Shanghai, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
2
|
Hegarty B. Making waves: Intelligent phage cocktail design, a pathway to precise microbial control in water systems. WATER RESEARCH 2025; 268:122594. [PMID: 39405620 DOI: 10.1016/j.watres.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 12/19/2024]
Abstract
Current practices in water and wastewater treatment to control unwanted microbes have led to new problems, including health effects from disinfection byproducts, growth of opportunistic pathogens resistant to residual disinfectants (e.g., chlorine), and antibiotic resistance. These challenges are spurring interest in rethinking our practices of microbial control. Simultaneously, advances in molecular biology and computation power are driving renewed interest in using phages (viruses that infect bacteria) to precisely control microbial growth (aka, phage biocontrol). In this Making Waves article, I begin by reviewing the current state of research into phage cocktail design, emphasizing our limited understanding of the features of successful phage cocktails (combinations of multiple types of phages). I describe the state of modeling phage-bacteria interactions and underscore the need for increasing research efforts to predict phage cocktail success, a key gap slowing the application of phage biocontrol. I also detail how research must also focus on techniques for engineering more effective phages to offer a more rapid alternative to phage discovery from natural environments. In this way, phage cocktails comprised of phages with complementary infection strategies may be designed. The final area for increased research effort that I highlight is the need for phage cocktail design to account for possible unintended environmental effects, a risk that is increasingly acknowledged in phage ecology studies but mostly ignored by those developing phage biocontrol technologies. By focusing more research effort towards the areas necessary for intelligent phage cocktail design, we can accelerate the development of phage-based biocontrol in water systems and improve public health.
Collapse
Affiliation(s)
- Bridget Hegarty
- Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, 44118, USA.
| |
Collapse
|
3
|
Wei Z, Li X, Ai C, Dang H. Characterization and Genomic Analyses of dsDNA Vibriophage vB_VpaM_XM1, Representing a New Viral Family. Mar Drugs 2024; 22:429. [PMID: 39330310 PMCID: PMC11432961 DOI: 10.3390/md22090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
A novel vibriophage vB_VpaM_XM1 (XM1) was described in the present study. Morphological analysis revealed that phage XM1 had Myovirus morphology, with an oblate icosahedral head and a long contractile tail. The genome size of XM1 is 46,056 bp, with a G + C content of 42.51%, encoding 69 open reading frames (ORFs). Moreover, XM1 showed a narrow host range, only lysing Vibrio xuii LMG 21346 (T) JL2919, Vibrio parahaemolyticus 1.1997, and V. parahaemolyticus MCCC 1H00029 among the tested bacteria. One-step growth curves showed that XM1 has a 20-min latent period and a burst size of 398 plaque-forming units (PFU)/cell. In addition, XM1 exhibited broad pH, thermal, and salinity stability, as well as strong lytic activity, even at a multiplicity of infection (MOI) of 0.001. Multiple genome comparisons and phylogenetic analyses showed that phage XM1 is grouped in a clade with three other phages, including Vibrio phages Rostov 7, X29, and phi 2, and is distinct from all known viral families that have ratified by the standard genomic analysis of the International Committee on Taxonomy of Viruses (ICTV). Therefore, the above four phages might represent a new viral family, tentatively named Weiviridae. The broad physiological adaptability of phage XM1 and its high lytic activity and host specificity indicated that this novel phage is a good candidate for being used as a therapeutic bioagent against infections caused by certain V. parahaemolyticus strains.
Collapse
Affiliation(s)
- Zuyun Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Xuejing Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Mariculture Breeding, Xiamen 361102, China
| | - Hongyue Dang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen 361102, China
| |
Collapse
|
4
|
Bastien GE, Cable RN, Batterbee C, Wing AJ, Zaman L, Duhaime MB. Virus-host interactions predictor (VHIP): Machine learning approach to resolve microbial virus-host interaction networks. PLoS Comput Biol 2024; 20:e1011649. [PMID: 39292721 PMCID: PMC11441702 DOI: 10.1371/journal.pcbi.1011649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/30/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Viruses of microbes are ubiquitous biological entities that reprogram their hosts' metabolisms during infection in order to produce viral progeny, impacting the ecology and evolution of microbiomes with broad implications for human and environmental health. Advances in genome sequencing have led to the discovery of millions of novel viruses and an appreciation for the great diversity of viruses on Earth. Yet, with knowledge of only "who is there?" we fall short in our ability to infer the impacts of viruses on microbes at population, community, and ecosystem-scales. To do this, we need a more explicit understanding "who do they infect?" Here, we developed a novel machine learning model (ML), Virus-Host Interaction Predictor (VHIP), to predict virus-host interactions (infection/non-infection) from input virus and host genomes. This ML model was trained and tested on a high-value manually curated set of 8849 virus-host pairs and their corresponding sequence data. The resulting dataset, 'Virus Host Range network' (VHRnet), is core to VHIP functionality. Each data point that underlies the VHIP training and testing represents a lab-tested virus-host pair in VHRnet, from which meaningful signals of viral adaptation to host were computed from genomic sequences. VHIP departs from existing virus-host prediction models in its ability to predict multiple interactions rather than predicting a single most likely host or host clade. As a result, VHIP is able to infer the complexity of virus-host networks in natural systems. VHIP has an 87.8% accuracy rate at predicting interactions between virus-host pairs at the species level and can be applied to novel viral and host population genomes reconstructed from metagenomic datasets.
Collapse
Affiliation(s)
- G. Eric Bastien
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel N. Cable
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cecelia Batterbee
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - A. J. Wing
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa B. Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Jia K, Peng Y, Chen X, Jian H, Jin M, Yi Z, Su M, Dong X, Yi M. A Novel Inovirus Reprograms Metabolism and Motility of Marine Alteromonas. Microbiol Spectr 2022; 10:e0338822. [PMID: 36301121 PMCID: PMC9769780 DOI: 10.1128/spectrum.03388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/10/2023] Open
Abstract
Members from the Inoviridae family with striking features are widespread, highly diverse, and ecologically pervasive across multiple hosts and environments. However, a small number of inoviruses have been isolated and studied. Here, a filamentous phage infecting Alteromonas abrolhosensis, designated ϕAFP1, was isolated from the South China Sea and represented a novel genus of Inoviridae. ϕAFP1 consisted of a single-stranded DNA genome (5986 bp), encoding eight putative ORFs. Comparative analyses revealed ϕAFP1 could be regarded as genetic mosaics having homologous sequences with Ralstonia and Stenotrophomonas phages. The temporal transcriptome analysis of A. abrolhosensis to ϕAFP1 infection revealed that 7.78% of the host genes were differentially expressed. The genes involved in translation processes, ribosome pathways, and degradation of multiple amino acid pathways at the plateau period were upregulated, while host material catabolic and bacterial motility-related genes were downregulated, indicating that ϕAFP1 might hijack the energy of the host for the synthesis of phage proteins. ϕAFP1 exerted step-by-step control on host genes through the appropriate level of utilizing host resources. Our study provided novel information for a better understanding of filamentous phage characteristics and phage-host interactions. IMPORTANCE Alteromonas is widely distributed and plays a vital role in biogeochemical in marine environments. However, little information about Alteromonas phages is available. Here, we isolated and characterized the biological characteristics and genome sequence of a novel inovirus infecting Alteromonas abrolhosensis, designated ϕAFP1, representing a novel viral genus of Inoviridae. We then presented a comprehensive view of the ϕAFP1 phage-Alteromonas abrolhosensis interactions, elucidating reprogramed host metabolism and motility. Our study provided novel information for better comprehension of filamentous phage characteristics and phage-host interactions.
Collapse
Affiliation(s)
- Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xueji Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Jin
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
6
|
Cao Y, Ma R, Li Z, Mao X, Li Y, Wu Y, Wang L, Han K, Li L, Ma D, Zhou Y, Li X, Wang X. Broad-Spectrum Salmonella Phages PSE-D1 and PST-H1 Controls Salmonella in Foods. Viruses 2022; 14:v14122647. [PMID: 36560651 PMCID: PMC9784834 DOI: 10.3390/v14122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Food contamination by Salmonella can lead to serious foodborne diseases that constantly threaten public health. Innovative and effective strategies are needed to control foodborne pathogenic contamination since the incidence of foodborne diseases has increased gradually. In the present study, two broad-spectrum phages named Salmonella phage PSE-D1 and Salmonella phage PST-H1 were isolated from sewage in China. Phages PSE-D1 and PST-H1 were obtained by enrichment with Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) CVCC1806 and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) CVCC3384, respectively. They were able to lyse Salmonella, E. coli and K. pneumoniae and exhibited broad host range. Further study demonstrated that PSE-D1 and PST-H1 showed high pH and thermal tolerances. Phage PSE-D1 belongs to the Jiaodavirus genus, Tevenvirinae subfamily, while phage PST-H1 belongs to the Jerseyvirus genus, Guernseyvirinae subfamily according to morphology and phylogeny. The results of genome analysis showed that PSE-D1 and PST-H1 lack virulence and drug-resistance genes. The effects of PSE-D1 and PST-H1 on controlling S. Enteritidis CVCC1806 and S. Typhimurium CVCC3384 contamination in three kinds of foods (eggshells, sausages and milk) were further investigated, respectively. Our results showed that, compared to phage-free groups, PSE-D1 and PST-H1 inhibited the growth of their host strain significantly. A significant reduction of host bacteria titers (1.5 and 1.9 log10 CFU/sample, p < 0.001) on eggshells was observed under PSE-D1 and PST-H1 treatments, respectively. Furthermore, administration of PSE-D1 and PST-H1 decreased the counts of bacteria by 1.1 and 1.2 log10 CFU/cm2 (p < 0.001) in sausages as well as 1.5 and 1.8 log10 CFU/mL (p < 0.001) in milk, respectively. Interesting, the bacteriostasis efficacy of both phages exhibited more significantly at 4 °C than that at 28 °C in eggshells and milk and sausages. In sum, the purpose of our research was evaluating the counteracting effect of phage PSE-D1 and PST-H1 on the spread of Salmonella on contaminated foods products. Our results suggested that these two phage-based biocontrol treatments are promising strategies for controlling pathogenic Salmonella contaminated food.
Collapse
Affiliation(s)
- Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Runwen Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Ziyong Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xinyu Mao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yinan Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yuxin Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Lei Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Dongxin Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Yuqing Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
- Correspondence: or (X.L.); or (X.W.); Tel.: +86-771-3235635 (X.L. & X.W.)
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China
- Correspondence: or (X.L.); or (X.W.); Tel.: +86-771-3235635 (X.L. & X.W.)
| |
Collapse
|
7
|
Abstract
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage–host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage–host coevolution, and our work provides new insight into viral evolution and infection strategies.
Collapse
|
8
|
Zheng H, Liu B, Xu Y, Zhang Z, Man H, Liu J, Chen F. An Inducible Microbacterium Prophage vB_MoxS-R1 Represents a Novel Lineage of Siphovirus. Viruses 2022; 14:v14040731. [PMID: 35458461 PMCID: PMC9030533 DOI: 10.3390/v14040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lytic and lysogenic infections are the main strategies used by viruses to interact with microbial hosts. The genetic information of prophages provides insights into the nature of phages and their potential influences on hosts. Here, the siphovirus vB_MoxS-R1 was induced from a Microbacterium strain isolated from an estuarine Synechococcus culture. vB_MoxS-R1 has a high replication capability, with an estimated burst size of 2000 virions per cell. vB_MoxS-R1 represents a novel phage genus-based genomic analysis. Six transcriptional regulator (TR) genes were predicted in the vB_MoxS-R1 genome. Four of these TR genes are involved in stress responses, virulence and amino acid transportation in bacteria, suggesting that they may play roles in regulating the host cell metabolism in response to external environmental changes. A glycerophosphodiester phosphodiesterase gene related to phosphorus acquisition was also identified in the vB_MoxS-R1 genome. The presence of six TR genes and the phosphorus-acquisition gene suggests that prophage vB_MoxS-R1 has the potential to influence survival and adaptation of its host during lysogeny. Possession of four endonuclease genes in the prophage genome suggests that vB_MoxS-R1 is likely involved in DNA recombination or gene conversion and further influences host evolution.
Collapse
Affiliation(s)
- Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361000, China
- Correspondence: (Y.X.); (J.L.)
| | - Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Hongcong Man
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
- Correspondence: (Y.X.); (J.L.)
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA;
| |
Collapse
|
9
|
Genome and Ecology of a Novel Alteromonas Podovirus, ZP6, Representing a New Viral Genus, Mareflavirus. Microbiol Spectr 2021; 9:e0046321. [PMID: 34643440 PMCID: PMC8515928 DOI: 10.1128/spectrum.00463-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
Collapse
|
10
|
Liu Y, Zheng K, Liu B, Liang Y, You S, Zhang W, Zhang X, Jie Y, Shao H, Jiang Y, Guo C, He H, Wang H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and Genomic Analysis of Marinobacter Phage vB_MalS-PS3, Representing a New Lambda-Like Temperate Siphoviral Genus Infecting Algae-Associated Bacteria. Front Microbiol 2021; 12:726074. [PMID: 34512604 PMCID: PMC8424206 DOI: 10.3389/fmicb.2021.726074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from −20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.
Collapse
Affiliation(s)
- Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Baohong Liu
- Department of Hospital Infection Management, Qilu Hospital, Shandong University, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Siyuan You
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Wenjing Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yaqi Jie
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|