1
|
Braz M, Pereira C, Freire CSR, Almeida A. A Review on Recent Trends in Bacteriophages for Post-Harvest Food Decontamination. Microorganisms 2025; 13:515. [PMID: 40142412 PMCID: PMC11946132 DOI: 10.3390/microorganisms13030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Infectious diseases resulting from unsafe food consumption are a global concern. Despite recent advances and control measures in the food industry aimed at fulfilling the growing consumer demand for high-quality and safe food products, infection outbreaks continue to occur. This review stands out by providing an overview of post-harvest food decontamination methods against some of the most important bacterial foodborne pathogens, with particular focus on the advantages and challenges of using phages, including their most recent post-harvest applications directly to food and integration into active food packaging systems, highlighting their potential in providing safer and healthier food products. The already approved commercial phage products and the numerous available studies demonstrate their antibacterial efficacy against some of the most problematic foodborne pathogens in different food products, reinforcing their possible use in the future as a current practice in the food industry for food decontamination. Moreover, the incorporation of phages into packaging materials holds particular promise, providing protection against harsh conditions and enabling their controlled and continuous release into the food matrix. The effectiveness of phage-added packaging materials in reducing the growth of pathogens in food systems has been well-demonstrated. However, there are still some challenges associated with the development of phage-based packaging systems that need to be addressed with future research.
Collapse
Affiliation(s)
- Márcia Braz
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
| | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.B.); (C.P.)
| |
Collapse
|
2
|
Yang J, Zhu X, Xu X, Sun Q. Recent knowledge in phages, phage-encoded endolysin, and phage encapsulation against foodborne pathogens. Crit Rev Food Sci Nutr 2024; 64:12040-12060. [PMID: 37589483 DOI: 10.1080/10408398.2023.2246554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The use of antibiotics had reached a plateau due to antibiotic resistance, overuse, and residue. Bacteriophages have recently attracted considerable attention as alternative biocontrol agents. Here, we provide an up-to-date overview of phage applications in the food industry. We reviewed recently reported phages against ten typical foodborne pathogens, studies of competitive phage-encoded endolysins, and the primary outcomes of phage encapsulation in food packaging and pathogen detection. Furthermore, we identified existing barriers that still need to be addressed and proposed potential solutions to overcome these obstacles in the future.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Xiaolong Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
3
|
Yan J, Guo Z, Xie J. A Critical Analysis of the Opportunities and Challenges of Phage Application in Seafood Quality Control. Foods 2024; 13:3282. [PMID: 39456344 PMCID: PMC11506950 DOI: 10.3390/foods13203282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Seafood is an important source of food and protein for humans. However, it is highly susceptible to microbial contamination, which has become a major challenge for the seafood processing industry. Bacteriophages are widely distributed in the environment and have been successfully used as biocontrol agents against pathogenic microorganisms in certain food processing applications. However, due to the influence of environmental factors and seafood matrices, using bacteriophages for commercial-scale biocontrol strategies still faces some challenges. This article briefly introduces the current processes used for the production and purification of bacteriophages, lists the latest findings on the application of phage-based biocontrol in seafood, summarizes the challenges faced at the current stage, and provides corresponding strategies for solving these issues.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenghao Guo
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; (J.Y.); (Z.G.)
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
4
|
Santamaría-Corral G, Pagán I, Aguilera-Correa JJ, Esteban J, García-Quintanilla M. A Novel Bacteriophage Infecting Multi-Drug- and Extended-Drug-Resistant Pseudomonas aeruginosa Strains. Antibiotics (Basel) 2024; 13:523. [PMID: 38927189 PMCID: PMC11200629 DOI: 10.3390/antibiotics13060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of carbapenem-resistant P. aeruginosa has dramatically increased over the last decade, and antibiotics alone are not enough to eradicate infections caused by this opportunistic pathogen. Phage therapy is a fresh treatment that can be administered under compassionate use, particularly against chronic cases. However, it is necessary to thoroughly characterize the virus before therapeutic application. Our work describes the discovery of the novel sequenced bacteriophage, vB_PaeP-F1Pa, containing an integrase, performs a phylogenetical analysis, describes its stability at a physiological pH and temperature, latent period (40 min), and burst size (394 ± 166 particles per bacterial cell), and demonstrates its ability to infect MDR and XDR P. aeruginosa strains. Moreover, this novel bacteriophage was able to inhibit the growth of bacteria inside preformed biofilms. The present study offers a road map to analyze essential areas for successful phage therapy against MDR and XDR P. aeruginosa infections, and shows that a phage containing an integrase is also able to show good in vitro results, indicating that it is very important to perform a genomic analysis before any clinical use, in order to prevent adverse effects in patients.
Collapse
Affiliation(s)
- Guillermo Santamaría-Corral
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA/CSIC and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Madrid, Spain;
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Meritxell García-Quintanilla
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (G.S.-C.); (J.J.A.-C.); (M.G.-Q.)
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| |
Collapse
|
5
|
Zhang Y, Chu M, Liao YT, Salvador A, Wu VCH. Characterization of two novel Salmonella phages having biocontrol potential against Salmonella spp. in gastrointestinal conditions. Sci Rep 2024; 14:12294. [PMID: 38811648 PMCID: PMC11137056 DOI: 10.1038/s41598-024-59502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/11/2024] [Indexed: 05/31/2024] Open
Abstract
Salmonella is a primary enteric pathogen related to the contamination of poultry and other food products in numerous foodborne outbreaks. The continuous emergence of multidrug-resistant bacteria has become a serious issue due to the overuse of antibiotics. Hence, lytic phages are considered alternative biocontrol agents against these bacterial superbugs. Here, two Salmonella phages-S4lw and D5lw-were subjected to genomic and biological characterization and further encapsulated to improve the stability under acidic conditions mimicking gastrointestinal conditions. The two lytic phages, S4lw and D5lw, taxonomically belong to new species under the Guernseyvirinae and Ackermannviridae families, respectively. Each phage showed antimicrobial activities against diverse Salmonella spp., such as S. Enteritidis and S. Typhimurium, achieving 1.7-3.4 log reduction after 2-6 h of treatment. The phage cocktail at a multiplicity of infection (MOI) of 100 or 1000 completely inhibited these Salmonella strains for at least 14 h at 25 °C. Additionally, the bead-encapsulated phage cocktail could withstand low pH and different simulated gut environments for at least 1 h. Overall, the newly isolated phages can potentially mitigate Salmonella spp. under the gastrointestinal environments through encapsulation and may be further applied via oral administration to resolve common antimicrobial resistance issues in the poultry production chain.
Collapse
Affiliation(s)
- Yujie Zhang
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Mackenna Chu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA.
| |
Collapse
|
6
|
Śliwka P, Skaradziński G, Dusza I, Grzywacz A, Skaradzińska A. Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application. Pharmaceutics 2023; 15:2792. [PMID: 38140132 PMCID: PMC10747124 DOI: 10.3390/pharmaceutics15122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic application of bacterial viruses (phage therapy) has in recent years been rediscovered by many scientists, as a method which may potentially replace conventional antibacterial strategies. However, one of the main problems related to phage application is the stability of bacterial viruses. Though many techniques have been used to sustain phage activity, novel tools are needed to allow long-term phage storage and application in versatile forms. In this study, we combined two well-known methods for bacteriophage immobilization. First, encapsulated phages were obtained by means of extrusion-ionic gelation, and then alginate microspheres were dried using the lyophilization process (freeze-drying). To overcome the risk of phage instability upon dehydration, the microspheres were prepared with the addition of 0.3 M mannitol. Bacteriophage-loaded microspheres were stored at room temperature for 30 days and subsequently exposed to simulated gastric fluid (SGF). The survival of encapsulated phages after drying was significantly higher in the presence of mannitol. The highest number of viable bacteriophages exceeding 4.8 log10 pfu/mL in SGF were recovered from encapsulated and freeze-dried microspheres, while phages in lyophilized lysate were completely inactivated. Although the method requires optimization, it may be a promising approach for the immobilization of bacteriophages in terms of practical application.
Collapse
Affiliation(s)
| | | | | | | | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland (G.S.)
| |
Collapse
|
7
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Malik DJ, Goncalves-Ribeiro H, GoldSchmitt D, Collin J, Belkhiri A, Fernandes D, Weichert H, Kirpichnikova A. Advanced Manufacturing, Formulation and Microencapsulation of Therapeutic Phages. Clin Infect Dis 2023; 77:S370-S383. [PMID: 37932112 DOI: 10.1093/cid/ciad555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Manufacturing and formulation of stable, high purity, and high dose bacteriophage drug products (DPs) suitable for clinical usage would benefit from improved process monitoring and control of critical process parameters that affect product quality attributes. Chemistry, Manufacturing, and Controls (CMC) for both upstream (USP) and downstream processes (DSP) need mapping of critical process parameters (CPP) and linking these to critical quality attributes (CQA) to ensure quality and consistency of phage drug substance (DS) and DPs development. Single-use technologies are increasingly becoming the go-to manufacturing option with benefits both for phage bioprocess development at the engineering run research stage and for final manufacture of the phage DS. Future phage DPs under clinical development will benefit from implementation of process analytical technologies (PAT) for better process monitoring and control. These are increasingly being used to improve process robustness (to reduce batch-to-batch variability) and productivity (yielding high phage titers). Precise delivery of stable phage DPs that are suitably formulated as liquids, gels, solid-oral dosage forms, and so forth, could significantly enhance efficacy of phage therapy outcomes. Pre-clinical development of phage DPs must include at an early stage of development, considerations for their formulation including their characterization of physiochemical properties (size, charge, etc.), buffer pH and osmolality, compatibility with regulatory approved excipients, storage stability (packaging, temperature, humidity, etc.), ease of application, patient compliance, ease of manufacturability using scalable manufacturing unit operations, cost, and regulatory requirements.
Collapse
Affiliation(s)
- Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Dirk GoldSchmitt
- Division of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Joe Collin
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Aouatif Belkhiri
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Diogo Fernandes
- Nanomaterials Characterisation, Malvern Panalytical, Malvern, United Kingdom
| | - Henry Weichert
- Process Analytical Technology, Sartorius Stedim Biotech GmbH, Germany
| | - Anya Kirpichnikova
- Division of Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
9
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Kaya S, Kondolot Solak E. Development of ketorolac tromethamine loaded biocompatible polymeric microspheres and matrix films: designing for topical application. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Seçil Kaya
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
- Department of Material and Material Processing Technologies, Technical Sciences Vocational School, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational School, Gazi University, Ankara, Turkey
| |
Collapse
|