1
|
Huang YH, Guo XL, Shan MK, Yang GW, Yang HT. Class B scavenger receptor resists WSSV replication by recognizing the viral lipid molecule and promoting phagocytosis. J Virol 2025; 99:e0170024. [PMID: 39907282 PMCID: PMC11915803 DOI: 10.1128/jvi.01700-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
Class B scavenger receptors (SRBs) have been well-studied in bacteria-induced immune responses in invertebrates. However, the status of SRB-defending viruses remains unclear. In this study, we identified a scavenger receptor in Procambarus clarkii (crayfish), which is homologous to mammalian SRBs, and designated it as PcSRB. The expression of PcSRB was upregulated after the WSSV challenge. The survival rate of crayfish was decreased, but the WSSV copy number increased after PcSRB knockdown during virus invasion. In addition, PcSRB bound to WSSV. Furthermore, we detected how PcSRB interacted with WSSV, and we found that PcSRB could bind to cholesta-3,5-diene, (CD3,5), a novel WSSV lipid ligand, rather than dibutyl phthalate (DBP). Besides, PcSRB could bind to VP19, VP26, and VP28, rather than VP24. Mutant-binding experiments demonstrated that the hydrophobic domain (130-180 aa) of PcSRB is important for recognizing WSSV. Furthermore, PcSRB might promote lysosomal eliminating function to degrade WSSV. Altogether, we identified a new mechanism for scavenger receptor recognition and resistance to WSSV.IMPORTANCEPcSRB could bind to WSSV directly. PcSRB could interact with WSSV via binding to lipid molecule CD3,5 and viral envelope proteins. PcSRB could influence lysosomal activation.
Collapse
Affiliation(s)
- Yi-Heng Huang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin-Lu Guo
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meng-Ke Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
2
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
3
|
Specific Binding and Endocytosis of Liposomes to HEK293T Cells via Myrisoylated Pre-S1 Peptide Bound to Sodium Taurocholate Cotransporting Polypeptide. Vaccines (Basel) 2022; 10:vaccines10122050. [PMID: 36560460 PMCID: PMC9782868 DOI: 10.3390/vaccines10122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Sodium taurocholate cotransporting polypeptide (NTCP) functions as a key receptor for the hepatitis B virus (HBV) infection. Analyzing HBV and NTCP interaction is an important issue not only for basic research but also for the development of anti-HBV therapeutics. We developed here a novel model system to analyze the interaction of NTCP with liposomes instead of HBV. (2) Methods: Liposomal binding and endocytosis through NTCP in HEK293T cells were achieved by serial treatments of HEL293T cells transiently expressing NTCP-green fluorescence protein (GFP) fusion protein with a synthetic biotinylated pre-S1 peptide (Myr47-Bio) and streptavidin (SA) complex (i.e., Myr47-Bio+SA) followed by biotinylated liposomes. By this procedure, binding of [biotinylated liposomes]-[Myr47-Bio+SA]-[NTCP-GFP] was formed. (3) Results: Using this model system, we found that liposomal binding to NTCP on the cell surface via Myr47-Bio+SA was far more efficient than that to scavenger receptor class B type 1 (SR-B1). Furthermore, liposomes bound to cell surface NTCP via Myr47-Bio+SA were endocytosed into cells after cells were cultured at 37 °C. However, this endocytosis was suppressed by 4 °C or cytochalasin B treatment. (4) Conclusions: This model system will be useful for not only analyzing HBV entry mechanisms but also screening substances to prevent HBV infection.
Collapse
|
4
|
Han H, Wang Y, Xu S, Han C, Qin Q, Wei S. High-density lipoproteins negatively regulate innate immunity and facilitate red-spotted grouper nervous necrosis virus entry via scavenger receptor B type 1. Int J Biol Macromol 2022; 215:424-433. [PMID: 35752331 DOI: 10.1016/j.ijbiomac.2022.06.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Lipid metabolism plays an important role in viral infections, and it can directly or indirectly affect various stages of viral infection in cells. As an important component of lipid metabolism, high-density lipoprotein (HDL) plays crucial roles in inflammation, immunity, and viral infections. Scavenger receptor B type 1 (SR-B1), a receptor of HDL, cannot be ignored in the regulation of lipid metabolism. Here, we investigate, for the first time, the role of Epinephelus coioides SR-B1 (Ec-SR-B1) in red-spotted grouper nervous necrosis virus (RGNNV) infection. Our results indicate that Ec-SR-B1 could promote RGNNV infection. We also demonstrate that Ec-SR-B1 could facilitate viral entry and interact with capsid protein (CP) of RGNNV. As the natural ligand of SR-B1, HDL significantly increased RGNNV entry in a dose-dependent manner. However, we observed no effect of HDL on Ec-SR-B1 expression. The results of the micro-scale thermophoresis assay did not reveal an association between HDL and CP, suggesting that RGNNV does not enter target cells by using HDL as a ligand to bind to its receptor. In addition, block lipid transport-1, a compound that inhibits HDL-mediated cholesterol transfer, reduced the HDL-induced enhancement of RGNNV infection, indicating a role for lipid transfer in facilitating RGNNV entry. Furthermore, HDL inhibited the expression of pro-inflammatory factors and antiviral genes in a dose-dependent manner. These findings suggest that the HDL-induced enhancement of RGNNV entry involves the complex interplay between Ec-SR-B1, HDL, and RGNNV, as well as the regulation of innate antiviral responses by HDL. In summary, we highlight the crucial role of HDL in RGNNV entry, identify a possible molecular connection between RGNNV and lipoprotein metabolism, and indicate the role of Ec-SR-B1 in RGNNV infection.
Collapse
Affiliation(s)
- Honglin Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Suifeng Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 528478, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Hinuma S, Kuroda S. Binding of Hepatitis B Virus Pre-S1 Domain-Derived Synthetic Myristoylated Peptide to Scavenger Receptor Class B Type 1 with Differential Properties from Sodium Taurocholate Cotransporting Polypeptide. Viruses 2022; 14:v14010105. [PMID: 35062309 PMCID: PMC8780415 DOI: 10.3390/v14010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The myristoylated pre-S1 peptide (Myr47) synthesized to mimic pre-S1 domain (2-48) in large (L) surface protein of hepatitis B virus (HBV) prevents HBV infection to hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP). We previously demonstrated that yeast-derived nanoparticles containing L protein (bio-nanocapsules: BNCs) bind scavenger receptor class B type 1 (SR-B1). In this study, we examined the binding of Mry47 to SR-B1. (2) Methods: The binding and endocytosis of fluorescence-labeled Myr47 to SR-B1 (and its mutants)-green fluorescence protein (GFP) fusion proteins expressed in HEK293T cells were analyzed using flow cytometry and laser scanning microscopy (LSM). Various ligand-binding properties were compared between SR-B1-GFP and NTCP-GFP. Furthermore, the binding of biotinylated Myr47 to SR-B1-GFP expressed on HEK293T cells was analyzed via pull-down assays using a crosslinker and streptavidin-conjugated beads. (3) Conclusions: SR-B1 bound not only Myr47 but also its myristoylated analog and BNCs, but failed to bind a peptide without myristoylation. However, NTCP only bound Myr47 among the ligands tested. Studies using SR-B1 mutants suggested that both BNCs and Myr47 bind to similar sites of SR-B1. Crosslinking studies indicated that Myr47 binds preferentially SR-B1 multimer than monomer in both HEK293T and HepG2 cells.
Collapse
|