1
|
Salazar AS, Vincent L, Ebner B, Nogueira NF, Krauss L, Meyer MS, Grant J, Aguilar N, Pester MS, Parker M, Gonzalez A, Mendez A, Carrico A, Hurwitz BE, Alcaide ML, Martinez C. Macrovascular Function in People with HIV After Recent SARS-CoV-2 Infection. JOURNAL OF VASCULAR DISEASES 2025; 4:4. [PMID: 40110487 PMCID: PMC11922556 DOI: 10.3390/jvd4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Background People with HIV (PWH) are at increased risk of vascular dysfunction and cardiovascular disease (CVD). SARS-CoV-2 infection has been associated with acute CVD complications. The aim of the study was to as-sess macrovascular function as an early indicator of CVD risk in PWH after mild SARS-CoV-2 infection. Methods PWH aged 20-60 years, with undetectable viral load (RNA < 20 copies/mL), on stable antiretroviral therapy (≥6 months) and history of mild COVID-19 (≥30 days) without any CVD manifestations prior to enrollment were recruited. Participants were excluded if they had history of diabetes mellitus, end-stage renal disease, heart or respiratory disease. Participants were matched 1:1 to pre-pandemic PWH. A health survey, surrogate measures of CVD risk, and macrovascular function (brachial artery flow-mediated vasodilation and arterial stiffness assessments via applanation tonometry) were compared between group. Results A total of 17 PWH and history of COVID-19 (PWH/COV+) were matched with 17 PWH without COVID-19 (PWH/COV-) pre-pandemic. Mean age (45.5 years), sex (76.5% male), body mass index (27.3), and duration of HIV infection (12.2 years) were not different between groups. Both groups had comparable CVD risk factors (total cholesterol, LDL, HDL, systolic and diastolic blood pressure). There were no differences in measures of flow mediated arterial dilatation or arterial stiffness after 30 days of SARS-CoV-2 infection. Conclusions After recent SARS-CoV-2 infection, PWH did not demonstrate evidence of macrovascular dysfunction and increased CVD risk. Results suggest that CVD risk may not be increased in people with well-controlled HIV who did not manifest CVD complications SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ana S Salazar
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL 33101, USA
| | - Louis Vincent
- Division of Cardiovascular Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bertrand Ebner
- Division of Cardiovascular Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nicholas Fonseca Nogueira
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leah Krauss
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Madison S Meyer
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jelani Grant
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Natalie Aguilar
- Division of Cardiovascular Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mollie S Pester
- Behavioral Medicine Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Meela Parker
- Behavioral Medicine Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alex Gonzalez
- Behavioral Medicine Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Armando Mendez
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adam Carrico
- Department of Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Barry E Hurwitz
- Behavioral Medicine Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria L Alcaide
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Claudia Martinez
- Division of Cardiovascular Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Obeagu EI. The dynamic role of soluble urokinase plasminogen activator receptor (suPAR) in monitoring coagulation dysfunction during COVID-19 progression: a review. Ann Med Surg (Lond) 2025; 87:635-640. [PMID: 40110334 PMCID: PMC11918634 DOI: 10.1097/ms9.0000000000002791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/20/2024] [Indexed: 03/22/2025] Open
Abstract
COVID-19, caused by the severe acute respiratory syndrome coronavirus 2, has led to significant morbidity and mortality worldwide, with severe complications often involving coagulation dysfunction and thromboembolic events. Identifying reliable biomarkers for early detection and monitoring of these complications is crucial for improving patient outcomes. The soluble urokinase plasminogen activator receptor (suPAR) has emerged as a potential biomarker in this context, given its role in inflammation and immune response. Elevated suPAR levels correlate with disease severity and inflammatory markers, making it a valuable indicator of the complex interplay between inflammation and coagulation observed in COVID-19. Elevated suPAR levels have been linked to an increased risk of thromboembolic events, such as deep vein thrombosis and pulmonary embolism. Combining suPAR measurement with other coagulation markers, such as D-dimer, enhances the predictive accuracy for thrombotic complications. Furthermore, higher suPAR levels are associated with increased disease severity, intensive care requirements, and higher mortality rates, underscoring its significance in risk stratification and therapeutic decision-making. The integration of suPAR measurement into routine clinical practice for COVID-19 could significantly aid in early diagnosis, risk assessment, and monitoring of therapeutic interventions. By providing insights into the patient's inflammatory and coagulation status, suPAR can guide the timely initiation of anticoagulant therapy and other treatments aimed at reducing thromboembolic complications. As research continues to validate suPAR's utility across diverse populations and clinical settings, it holds promise for becoming an integral component of clinical management strategies to mitigate the morbidity and mortality associated with COVID-19.
Collapse
|
3
|
Obeagu EI, Tukur M, Akaba K. Impacts of COVID-19 on hemostasis: coagulation abnormalities and management perspectives. Ann Med Surg (Lond) 2024; 86:5844-5850. [PMID: 39359765 PMCID: PMC11444586 DOI: 10.1097/ms9.0000000000002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/22/2024] [Indexed: 10/04/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has transcended its initial characterization as a respiratory illness, revealing substantial implications for hemostasis and coagulation pathways. COVID-19-associated coagulopathies have emerged as critical determinants of disease severity and prognosis, presenting a multifaceted challenge in clinical management. This paper aims to elucidate the intricate interplay between COVID-19 and hemostasis, delving into the underlying mechanisms of coagulation abnormalities, exploring the spectrum of thrombotic complications, and discussing evolving management strategies. Therapeutic interventions and anticoagulation strategies tailored for managing COVID-19-related coagulopathies form a significant focus, encompassing prophylactic and therapeutic approaches, heparin-based therapies, and individualized treatment paradigms. This paper underscores the imperative for ongoing research endeavors to refine diagnostic modalities, identify novel therapeutic targets, and ascertain long-term sequelae of COVID-19-induced coagulation abnormalities. Ultimately, a comprehensive understanding of the intricate relationship between COVID-19 and hemostasis is pivotal in devising effective management strategies to mitigate thrombotic risks, improve clinical outcomes, and pave the way for tailored interventions in affected individuals.
Collapse
Affiliation(s)
| | - Muhammad Tukur
- Department of Science Education, Faculty of Education, Kampala International University, Kampala, Uganda
| | - Kingsley Akaba
- Department of Haematology, University of Calabar, Calabar, Cross-River State, Nigeria
| |
Collapse
|
4
|
Sidnawi B, Zhou B, Chen Z, Sehgal C, Santhanam S, Wu Q. A comprehensive physics-based model for the brachial Artery's full flow mediated dilation (FMD) response observed during the FMD test. Comput Biol Med 2024; 179:108900. [PMID: 39029430 PMCID: PMC11324374 DOI: 10.1016/j.compbiomed.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
In this study, a physics-based model is developed to describe the entire flow mediated dilation (FMD) response. A parameter quantifying the arterial wall's tendency to recover arises from the model, thereby providing a more elaborate description of the artery's physical state, in concert with other parameters characterizing mechanotransduction and structural aspects of the arterial wall. The arterial diameter's behavior throughout the full response is successfully reproduced by the model. Experimental FMD response data were obtained from healthy volunteers. The model's parameters are then adjusted to yield the closest match to the observed experimental response, hence delivering the parameter values pertaining to each subject. This study establishes a foundation based on which future potential clinical applications can be introduced, where endothelial function and general cardiovascular health are inexpensively and noninvasively quantified.
Collapse
Affiliation(s)
- Bchara Sidnawi
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA, 19085, USA
| | - Bingjie Zhou
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA, 19085, USA
| | - Zhen Chen
- Department of Radiology, University of Pennsylvania, PA, 19104, USA
| | - Chandra Sehgal
- Department of Radiology, University of Pennsylvania, PA, 19104, USA
| | - Sridhar Santhanam
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA
| | - Qianhong Wu
- Department of Mechanical Engineering, Villanova University, PA, 19085, USA; Cellular Biomechanics and Sport Science Laboratory, Villanova University, PA, 19085, USA.
| |
Collapse
|
5
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Meng QT, Song WQ, Churilov LP, Zhang FM, Wang YF. Psychophysical therapy and underlying neuroendocrine mechanisms for the rehabilitation of long COVID-19. Front Endocrinol (Lausanne) 2023; 14:1120475. [PMID: 37842301 PMCID: PMC10570751 DOI: 10.3389/fendo.2023.1120475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
With the global epidemic and prevention of the COVID-19, long COVID-19 sequelae and its comprehensive prevention have attracted widespread attention. Long COVID-19 sequelae refer to that three months after acute COVID-19, the test of SARS-CoV-2 is negative, but some symptoms still exist, such as cough, prolonged dyspnea and fatigue, shortness of breath, palpitations and insomnia. Its pathological mechanism is related to direct viral damage, immunopathological response, endocrine and metabolism disorders. Although there are more effective methods for treating COVID-19, the treatment options available for patients with long COVID-19 remain quite limited. Psychophysical therapies, such as exercise, oxygen therapy, photobiomodulation, and meditation, have been attempted as treatment modalities for long COVID-19, which have the potential to promote recovery through immune regulation, antioxidant effects, and neuroendocrine regulation. Neuroendocrine regulation plays a significant role in repairing damage after viral infection, regulating immune homeostasis, and improving metabolic activity in patients with long COVID-19. This review uses oxytocin as an example to examine the neuroendocrine mechanisms involved in the psychophysical therapies of long COVID-19 syndrome and proposes a psychophysical strategy for the treatment of long COVID-19.
Collapse
Affiliation(s)
- Qing-Tai Meng
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wu-Qi Song
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Leonid P. Churilov
- Department of Experimental Tuberculosis, St. Petersburg State Research Institute of Phthisiopulmonology, Saint-Petersburg, Russia
| | - Feng-Min Zhang
- WU Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Vascular Function, Systemic Inflammation, and Coagulation Activation 18 Months after COVID-19 Infection: An Observational Cohort Study. J Clin Med 2023; 12:jcm12041413. [PMID: 36835948 PMCID: PMC9965558 DOI: 10.3390/jcm12041413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Among its effect on virtually all other organs, COVID-19 affects the cardiovascular system, potentially jeopardizing the cardiovascular health of millions. Previous research has shown no indication of macrovascular dysfunction as reflected by carotid artery reactivity, but has shown sustained microvascular dysfunction, systemic inflammation, and coagulation activation at 3 months after acute COVID-19. The long-term effects of COVID-19 on vascular function remain unknown. MATERIALS AND METHODS This cohort study involved 167 patients who participated in the COVAS trial. At 3 months and 18 months after acute COVID-19, macrovascular dysfunction was evaluated by measuring the carotid artery diameter in response to cold pressor testing. Additionally, plasma endothelin-1, von Willebrand factor, Interleukin(IL)-1ra, IL-6, IL-18, and coagulation factor complexes were measured using ELISA techniques. RESULTS The prevalence of macrovascular dysfunction did not differ between 3 months (14.5%) and 18 months (11.7%) after COVID-19 infection (p = 0.585). However, there was a significant decrease in absolute carotid artery diameter change, 3.5% ± 4.7 vs. 2.7% ± 2.5, p-0.001, respectively. Additionally, levels of vWF:Ag were persistently high in 80% of COVID-19 survivors, reflecting endothelial cell damage and possibly attenuated endothelial function. Furthermore, while levels of the inflammatory cytokines interleukin(IL)-1RA and IL-18 were normalized and evidence of contact pathway activation was no longer present, the concentrations of IL-6 and thrombin:antithrombin complexes were further increased at 18 months versus 3 months (2.5 pg/mL ± 2.6 vs. 4.0 pg/mL ± 4.6, p = 0.006 and 4.9 μg/L ± 4.4 vs. 18.2 μg/L ± 11.4, p < 0.001, respectively). DISCUSSION This study shows that 18 months after COVID-19 infection, the incidence of macrovascular dysfunction as defined by a constrictive response during carotid artery reactivity testing is not increased. Nonetheless, plasma biomarkers indicate sustained endothelial cell activation (vWF), systemic inflammation (IL-6), and extrinsic/common pathway coagulation activation (FVII:AT, TAT) 18 months after COVID-19 infection.
Collapse
|
8
|
Chan J, Senior H, Homitz J, Cashin N, Guers JJ. Individuals with a previous symptomatic COVID-19 infection have altered heart rate and blood pressure variability during acute exercise. Front Physiol 2023; 14:1052369. [PMID: 36814473 PMCID: PMC9939691 DOI: 10.3389/fphys.2023.1052369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction: As the number of COVID-19 cases begin to diminish it is important to turn our attention to any long-term issues that may be associated with a prior infection. Cardiovascular defects have been noted following prior SARS-CoV-2 infections. However, less is known about how a previous infection alters the cardiovascular response to exercise. Further, differences may exist during exercise between previously SARS-CoV-2 positive individuals who had symptoms (symptomatic) relative to those who did not have symptoms (asymptomatic). We hypothesized that previously symptomatic (S) COVID-19 recoveries have an altered cardiovascular response to acute exercise relative to both control (CON; never infected), and previously COVID-19 positive asymptomatic (AS) individuals. Methods: Twenty-seven subjects (CON = 9; AS = 9; S = 9) underwent 30 min of submaximal treadmill exercise. During exercise, blood pressure was recorded on the brachial artery every 5 min and 3-lead electrocardiography was measured continuously. Indirect indicators of autonomic nervous system health: heart rate variability and blood pressure variability were measured during each session. Baseline mean arterial pressure (MAP) was taken prior to exercise in seated, standing and supine positions. Results: Blood pressure was similar (p > 0.05) amongst all three groups. There were no differences between average heart rate (HR; CON = 104 ± 4 BPM vs AS = 118 ± 6 BPM vs. S = 112 ± 3 BPM), mean arterial pressure (MAP; CON = 108 ± 4 mmHg vs. AS = 105 ± 13 mmHg vs. S = 108 ± 7 mmHg) or oxygen consumption (VO2) between groups during a bout of exercise. However, the standard deviation of the inter beat intervals of normal sinus beats, a measure of heart rate variability (HRV) (CON = 138 ± 2.8 m vs. AS = 156 ± 6 m vs. S = 77.7 ± 11 m; p < 0.05) and blood pressure variability (BPV; CON = 5.18 ± 1.1 vs. AS = 12.1 ± 0.88 mmHg vs. S = 10.2 ± 10.7 mmHg; p < 0.05) were different in our S group. Further, when HRV was assessed in the frequency domain the very low frequency was different during exercise in the S group relative to the other groups. Discussion: Collectively, these data suggest that a previous symptomatic SARS-CoV-2 infection may alter heart rate and blood pressure regulation during exercise.
Collapse
|
9
|
Zhou W, Chen Z, Fang Z, Xu D. Network analysis for elucidating the mechanisms of Shenfu injection in preventing and treating COVID-19 combined with heart failure. Comput Biol Med 2022; 148:105845. [PMID: 35849948 PMCID: PMC9279168 DOI: 10.1016/j.compbiomed.2022.105845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The emergence of the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to millions of infections and is exerting an unprecedented impact on society and economies worldwide. The evidence showed that heart failure (HF) is a clinical syndrome that could be encountered at different stages during the progression of COVID-19. Shenfu injection (SFI), a traditional Chinese medicine (TCM) formula has been widely used for heart failure therapy in China and was suggested to treat critical COVID-19 cases based on the guideline for diagnosis and treatment of COVID-19 (the 7th version) issued by National Health Commission of the People's Republic of China. However, the active components, potential targets, related pathways, and underlying pharmacology mechanism of SFI against COVID-19 combined with HF remain vague. OBJECTIVE To investigate the effectiveness and possible pharmacological mechanism of SFI for the prevention and treatment of COVID-19 combined with HF. METHODS In the current study, a network analysis approach integrating active compound screening (drug-likeness, lipophilicity, and aqueous solubility models), target fishing (Traditional Chinese Medicine Systems Pharmacology, fingerprint-based Similarity Ensemble Approach, and PharmMapper databases), compound-target-disease network construction (Cytoscape software), protein-protein interaction network construction (STRING and Cytoscape software), biological process analysis (STRING and Cytoscape plug-in Clue GO) and pathway analysis (Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis) was developed to decipher the active ingredients, potential targets, relevant pathways, and the therapeutic mechanisms of SFI for preventing and treating COVID-19 combined with HF. RESULTS Finally, 20 active compounds (DL ≥ 0.18, 1≤Alog P ≤ 5, and -5≤LogS ≤ -1) and 164 relevant targets of SFI were identified related to the development of COVID-19 combined with HF, which were mainly involved in three biological processes including metabolic, hemostasis, and cytokine signaling in immune system. The C-T-D network and reactome pathway analysis indicated that SFI probably regulated the pathological processes of heart failure, respiratory failure, lung injury, and inflammatory response in patients with COVID-19 combined with HF through acting on several targets and pathways. Moreover, the venn diagram was used to identify 54 overlapped targets of SFI, COVID-19, and HF. KEGG pathway enrichment analysis showed that 54 overlapped targets were highly enriched to several COVID-19 and HF related pathways, such as IL-17 signaling pathway, Th17 cell differentiation, and NF-kappa B signaling pathway. CONCLUSIONS A comprehensive network analysis approach framework was developed to systematically elucidate the potential pharmacological mechanism of SFI for the prevention and treatment of SFI against COVID-19 combined with HF. The current study may not only provide in-depth understanding of the pharmacological mechanisms of SFI, but also a scientific basis for the application of SFI against COVID-19 combined with HF.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong, China
| | - Zhangfu Fang
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| |
Collapse
|
10
|
Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Persistent Lung Injury and Prothrombotic State in Long COVID. Front Immunol 2022; 13:862522. [PMID: 35464473 PMCID: PMC9021447 DOI: 10.3389/fimmu.2022.862522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lung injury may persist during the recovery period of COVID-19 as shown through imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms leading to long COVID have not been adequately explained. Our aim is to investigate the basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic states may influence long-term pulmonary symptoms of COVID-19. The patient’s lungs remain vulnerable during the recovery stage due to persistent shedding of the virus, the inflammatory environment, the prothrombotic state, and injury and subsequent repair of the blood-air barrier. The transformation of inflammation to proliferation and fibrosis, hypoxia-involved vascular remodeling, vascular endothelial cell damage, phosphatidylserine-involved hypercoagulability, and continuous changes in serological markers all contribute to post-discharge lung injury. Considering the important role of microthrombus and arteriovenous thrombus in the process of pulmonary functional lesions to organic lesions, we further study the possibility that prothrombotic states, including pulmonary vascular endothelial cell activation and hypercoagulability, may affect long-term pulmonary symptoms in long COVID. Early use of combined anticoagulant and antiplatelet therapy is a promising approach to reduce the incidence of pulmonary sequelae. Essentially, early treatment can block the occurrence of thrombotic events. Because impeded pulmonary circulation causes large pressure imbalances over the alveolar membrane leading to the infiltration of plasma into the alveolar cavity, inhibition of thrombotic events can prevent pulmonary hypertension, formation of lung hyaline membranes, and lung consolidation.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chengyue Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A Novakovic
- Department of Research, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Department of Research, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Balawender K, Pliszka A, Surowiec A, Rajda S. COVID-19 infection as a new risk factor for penile Mondor disease. BMC Urol 2022; 22:57. [PMID: 35413893 PMCID: PMC9005161 DOI: 10.1186/s12894-022-01002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Penile Mondor disease is a superficial dorsal vein thrombophlebitis of the penis, which mainly affects young and middle-aged men. It generally manifests as a visible painful cord located along the dorsal surface of the penis with signs of skin inflammation. The condition is usually self-limiting, but in severe cases a surgical procedure may be necessary in addition to pharmacological treatment. Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a frequent incidence of thrombophilia; therefore, such a prothrombotic state during infection may be a significant risk factor for penile Mondor disease. Case presentation The 34-year-old patient reported moderate pain felt on the surface of the penis. During the medical interview, the patient did not admit significant risk factors for Mondor Disease, apart from the previous, a month earlier COVID-19 disease. Examination revealed swelling erythema and a thick indurated cord on the surface of the penis. Color Doppler ultrasound was performed to confirm assumptions and exclude thrombosis of other penile vessels. Based on visible clots in the course of the superficial penile vein and after exclusion of vasculitis due to autoimmune disease the diagnosis of penile Mondor disease was made. Pharmacological therapy was implemented to further break down the clot and prevent rethrombosis in the penile vessels. The patient did not report any treatment complications and returned for a control visit, which revealed complete clot dissolution on ultrasound; therefore, complete recovery was stated. Conclusions This case report presents the correlation between SARS-Cov-2 infection and penile Mondor disease, based on the confirmed influence of COVID-19 on the pathophysiology of thrombosis. It can be concluded that COVID- 19 is a risk factor for Mondor disease, as in the presented case the virus was the only prothrombotic risk factor for the patient. Consequently, the possibility of developing thrombosis in the form of penile Mondor disease should be taken into account among patients with post-COVID-19 and active SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Krzysztof Balawender
- Clinical Department of Urology and Urological Oncology, Municipal Hospital in Rzeszow, Rycerska 4, 35-241, Rzeszow, Poland. .,Morphological Sciences Department, Institute of Medical Sciences, Medical College of Rzeszow University, Leszka Czarnego 4, 35-301, Rzeszow, Poland.
| | - Anna Pliszka
- Morphological Sciences Department, Institute of Medical Sciences, Medical College of Rzeszow University, Leszka Czarnego 4, 35-301, Rzeszow, Poland
| | - Agata Surowiec
- Morphological Sciences Department, Institute of Medical Sciences, Medical College of Rzeszow University, Leszka Czarnego 4, 35-301, Rzeszow, Poland
| | - Sebastian Rajda
- Morphological Sciences Department, Institute of Medical Sciences, Medical College of Rzeszow University, Leszka Czarnego 4, 35-301, Rzeszow, Poland
| |
Collapse
|