1
|
Luebbert L, Sullivan DK, Carilli M, Eldjárn Hjörleifsson K, Viloria Winnett A, Chari T, Pachter L. Detection of viral sequences at single-cell resolution identifies novel viruses associated with host gene expression changes. Nat Biotechnol 2025:10.1038/s41587-025-02614-y. [PMID: 40263451 DOI: 10.1038/s41587-025-02614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
The increasing use of high-throughput sequencing methods in research, agriculture and healthcare provides an opportunity for the cost-effective surveillance of viral diversity and investigation of virus-disease correlation. However, existing methods for identifying viruses in sequencing data rely on and are limited to reference genomes or cannot retain single-cell resolution through cell barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk and single-cell transcriptomics data based on the highly conserved RdRP protein, enabling the detection of over 100,000 RNA virus species. The analysis of viral presence and host gene expression in parallel at single-cell resolution allows for the characterization of host viromes and the identification of viral tropism and host responses. We apply our method to peripheral blood mononuclear cell data from rhesus macaques with Ebola virus disease and describe previously unknown putative viruses. Moreover, we are able to accurately predict viral presence in individual cells based on macaque gene expression.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Delaney K Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Carilli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Kristján Eldjárn Hjörleifsson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Alexander Viloria Winnett
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
2
|
Chang WS, Harvey E, Mahar JE, Firth C, Shi M, Simon-Loriere E, Geoghegan JL, Wille M. Improving the reporting of metagenomic virome-scale data. Commun Biol 2024; 7:1687. [PMID: 39706917 DOI: 10.1038/s42003-024-07212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
Over the last decade metagenomic sequencing has facilitated an increasing number of virome-scale studies, leading to an exponential expansion in understanding of virus diversity. This is partially driven by the decreasing costs of metagenomic sequencing, improvements in computational tools for revealing novel viruses, and an increased understanding of the key role that viruses play in human and animal health. A central concern associated with this remarkable increase in the number of virome-scale studies is the lack of broadly accepted "gold standards" for reporting the data and results generated. This is of particular importance for animal virome studies as there are a multitude of nuanced approaches for both data presentation and analysis, all of which impact the resulting outcomes. As such, the results of published studies can be difficult to contextualise and may be of reduced utility due to reporting deficiencies. Herein, we aim to address these reporting issues by outlining recommendations for the presentation of virome data, encouraging a transparent communication of findings that can be interpreted in evolutionary and ecological contexts.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Erin Harvey
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jackie E Mahar
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Animal Health Laboratory and Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Cadhla Firth
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mang Shi
- Sun Yat-Sen University, Shenzhen campus of Sun Yat-Sen University, Shenzhen, China
| | - Etienne Simon-Loriere
- Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Michelle Wille
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Nwokorogu VC, Pillai S, San JE, Pillay C, Nyaga MM, Sabiu S. A metagenomic investigation of the faecal RNA virome structure of asymptomatic chickens obtained from a commercial farm in Durban, KwaZulu-Natal province, South Africa. BMC Genomics 2024; 25:629. [PMID: 38914944 PMCID: PMC11194887 DOI: 10.1186/s12864-024-10517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Virome studies on birds, including chickens are relatively scarce, particularly from the African continent. Despite the continuous evolution of RNA viruses and severe losses recorded in poultry from seasonal viral outbreaks, the information on RNA virome composition is even scantier as a result of their highly unstable nature, genetic diversity, and difficulties associated with characterization. Also, information on factors that may modulate the occurrence of some viruses in birds is limited, particularly for domesticated birds. Viral metagenomics through advancements in sequencing technologies, has enabled the characterization of the entire virome of diverse host species using various samples. METHODS The complex RNA viral constituents present in 27 faecal samples of asymptomatic chickens from a South African farm collected at 3-time points from two independent seasons were determined, and the impact of the chicken's age and collection season on viral abundance and diversity was further investigated. The study utilized the non-invasive faecal sampling method, mRNA viral targeted enrichment steps, a whole transcriptome amplification strategy, Illumina sequencing, and bioinformatics tools. RESULTS The results obtained revealed a total of 48 viral species spanning across 11 orders, 15 families and 21 genera. Viral RNA families such as Coronaviridae, Picornaviridae, Reoviridae, Astroviridae, Caliciviridae, Picorbirnaviridae and Retroviridae were abundant, among which picornaviruses, demonstrated a 100% prevalence across the three age groups (2, 4 and 7 weeks) and two seasons (summer and winter) of the 27 faecal samples investigated. A further probe into the extent of variation between the different chicken groups investigated indicated that viral diversity and abundance were significantly influenced by age (P = 0.01099) and season (P = 0.00099) between chicken groups, while there was no effect on viral shedding within samples in a group (alpha diversity) for age (P = 0.146) and season (P = 0.242). CONCLUSION The presence of an exceedingly varied chicken RNA virome, encompassing avian, mammalian, fungal, and dietary-associated viruses, underscores the complexities inherent in comprehending the causation, dynamics, and interspecies transmission of RNA viruses within the investigated chicken population. Hence, chickens, even in the absence of discernible symptoms, can harbour viruses that may exhibit opportunistic, commensal, or pathogenic characteristics.
Collapse
Affiliation(s)
- Vivian C Nwokorogu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - James E San
- Nelson Mandela School of Medicine, KwaZulu-Natal Research Innovation and Sequencing platform unit, University of KwaZulu- Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
4
|
Duan J, Keeler E, McFarland A, Scott P, Collman RG, Bushman FD. The virome of the kitome: small circular virus-like genomes in laboratory reagents. Microbiol Resour Announc 2024; 13:e0126123. [PMID: 38591883 PMCID: PMC11080532 DOI: 10.1128/mra.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
In the course of studying the virome of protozoan parasites, we identified small circular genomes resembling viruses, which turned out to be contaminants from an RNA purification kit. We report their sequences here so others can detect possible contamination in their samples by aligning them to these targets.
Collapse
Affiliation(s)
- Jiayi Duan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alexander McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Pulmonary and Critical Care Division, Department of Medicine, Center for Translational Lung Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Pulmonary and Critical Care Division, Department of Medicine, Lung Biology Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Cebriá-Mendoza M, Díaz W, Sanjuán R, Cuevas JM. Optimized Recovery of Viral DNA and RNA from Blood Plasma for Viral Metagenomics. Methods Mol Biol 2024; 2732:155-164. [PMID: 38060124 DOI: 10.1007/978-1-0716-3515-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Metagenomics is vastly improving our ability to discover new viruses, as well as their possible associations with disease. However, metagenomics has also changed our understanding of viruses in general. This is because we can find viruses in healthy hosts in the absence of disease, which changes the perspective of viruses as mere pathogens and offers a new perspective in which viruses function as important components of ecosystems. In concrete, human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. These viruses are human anelloviruses and, to a lower extent, human pegiviruses. Viral metagenomics' major challenge is the correct isolation of the viral nucleic acids from a specific sample. For the protocol to be successful, all steps must be carefully chosen, in particular those that optimize the recovery of viral nucleic acids. Here, we present a procedure that allows the recovery of both DNA and RNA viruses from plasma samples.
Collapse
Affiliation(s)
- María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, València, Spain
| | - Wladimiro Díaz
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, València, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, València, Spain.
| |
Collapse
|
6
|
Okoh GR, Ariel E, Whitmore D, Horwood PF. Metagenomic and Molecular Detection of Novel Fecal Viruses in Free-Ranging Agile Wallabies. ECOHEALTH 2023; 20:427-440. [PMID: 38091182 DOI: 10.1007/s10393-023-01659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/26/2023] [Indexed: 02/21/2024]
Abstract
The agile wallaby (Notamacropus agilis) is one of the most abundant marsupial species in northern Queensland and a competent host for the zoonotic Ross River virus. Despite their increased proximity and interactions with humans, little is known about the viruses carried by these animals, and whether any are of conservation or zoonotic importance. Metagenomics and molecular techniques were used in a complementary manner to identify and characterize novel viruses in the fecal samples of free-ranging agile wallabies. We detected a variety of novel marsupial-related viral species including agile wallaby atadenovirus 1, agile wallaby chaphamaparvovirus 1-2, agile wallaby polyomavirus 1-2, agile wallaby associated picobirnavirus 1-9, and a known macropod gammaherpesvirus 3. Phylogenetic analyses indicate that most of these novel viruses would have co-evolved with their hosts (agile wallabies). Additionally, non-marsupial viruses that infect bacteria (phages), plants, insects, and other eukaryotes were identified. This study highlighted the utility of non-invasive sampling as well as the integration of broad-based molecular assays (consensus PCR and next generation sequencing) for monitoring the emergence of potential pathogenic viruses in wildlife species. Furthermore, the novel marsupial viruses identified in this study will enrich the diversity of knowledge about marsupial viruses, and may be useful for developing diagnostics and vaccines.
Collapse
Affiliation(s)
- God'spower Richard Okoh
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - David Whitmore
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
7
|
Stenberg H, Malmberg M, Hayer J. Screening for atypical porcine pestivirus in Swedish boar semen used for artificial insemination and a characterisation of the seminal RNA microbiome including the virome. BMC Vet Res 2023; 19:219. [PMID: 37864222 PMCID: PMC10588136 DOI: 10.1186/s12917-023-03762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Maja Malmberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Juliette Hayer
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
8
|
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology 2023; 585:42-60. [PMID: 37276766 DOI: 10.1016/j.virol.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.
Collapse
Affiliation(s)
- Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| | - Dakota M Rowsey
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sophie Gryseels
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium; Department of Biology, University of Antwerp, 2000, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Museum of Natural Sciences, 1000, Brussels, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Steger
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Kelsey M Yule
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
9
|
Jiang JZ, Fang YF, Wei HY, Zhu P, Liu M, Yuan WG, Yang LL, Guo YX, Jin T, Shi M, Yao T, Lu J, Ye LT, Shi SK, Wang M, Duan M, Zhang DC. A remarkably diverse and well-organized virus community in a filter-feeding oyster. MICROBIOME 2023; 11:2. [PMID: 36611217 PMCID: PMC9825006 DOI: 10.1186/s40168-022-01431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Viruses play critical roles in the marine environment because of their interactions with an extremely broad range of potential hosts. Many studies of viruses in seawater have been published, but viruses that inhabit marine animals have been largely neglected. Oysters are keystone species in coastal ecosystems, yet as filter-feeding bivalves with very large roosting numbers and species co-habitation, it is not clear what role they play in marine virus transmission and coastal microbiome regulation. RESULTS Here, we report a Dataset of Oyster Virome (DOV) that contains 728,784 nonredundant viral operational taxonomic unit contigs (≥ 800 bp) and 3473 high-quality viral genomes, enabling the first comprehensive overview of both DNA and RNA viral communities in the oyster Crassostrea hongkongensis. We discovered tremendous diversity among novel viruses that inhabit this oyster using multiple approaches, including reads recruitment, viral operational taxonomic units, and high-quality virus genomes. Our results show that these viruses are very different from viruses in the oceans or other habitats. In particular, the high diversity of novel circoviruses that we found in the oysters indicates that oysters may be potential hotspots for circoviruses. Notably, the viruses that were enriched in oysters are not random but are well-organized communities that can respond to changes in the health state of the host and the external environment at both compositional and functional levels. CONCLUSIONS In this study, we generated a first "knowledge landscape" of the oyster virome, which has increased the number of known oyster-related viruses by tens of thousands. Our results suggest that oysters provide a unique habitat that is different from that of seawater, and highlight the importance of filter-feeding bivalves for marine virus exploration as well as their essential but still invisible roles in regulating marine ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yi-Fei Fang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Majorbio Bio-Pharm Technology Co Ltd, Shanghai, 201203, China
| | - Hong-Ying Wei
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Peng Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Guang Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Li-Ling Yang
- Tianjin Agricultural University, Tianjin, 300384, China
| | | | - Tao Jin
- Guangdong Magigene Biotechnology Co Ltd, Guangzhou, 510000, Guangdong, China
| | - Mang Shi
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China
| | - Shao-Kun Shi
- Shenzhen Fisheries Development Research Center, Shenzhen, 518067, Guangdong, China
| | - Meng Wang
- Bureau of Agriculture and Rural Affairs of Conghua District, Guangzhou, 510925, Guangdong, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China, Hubei.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong, China.
| |
Collapse
|
10
|
Kawasaki J, Tomonaga K, Horie M. Large-scale investigation of zoonotic viruses in the era of high-throughput sequencing. Microbiol Immunol 2023; 67:1-13. [PMID: 36259224 DOI: 10.1111/1348-0421.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 01/10/2023]
Abstract
Zoonotic diseases considerably impact public health and socioeconomics. RNA viruses reportedly caused approximately 94% of zoonotic diseases documented from 1990 to 2010, emphasizing the importance of investigating RNA viruses in animals. Furthermore, it has been estimated that hundreds of thousands of animal viruses capable of infecting humans are yet to be discovered, warning against the inadequacy of our understanding of viral diversity. High-throughput sequencing (HTS) has enabled the identification of viral infections with relatively little bias. Viral searches using both symptomatic and asymptomatic animal samples by HTS have revealed hidden viral infections. This review introduces the history of viral searches using HTS, current analytical limitations, and future potentials. We primarily summarize recent research on large-scale investigations on viral infections reusing HTS data from public databases. Furthermore, considering the accumulation of uncultivated viruses, we discuss current studies and challenges for connecting viral sequences to their phenotypes using various approaches: performing data analysis, developing predictive modeling, or implementing high-throughput platforms of virological experiments. We believe that this article provides a future direction in large-scale investigations of potential zoonotic viruses using the HTS technology.
Collapse
Affiliation(s)
- Junna Kawasaki
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan.,Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
11
|
Kinsella CM, Deijs M, Gittelbauer HM, van der Hoek L, van Dijk K. Human Clinical Isolates of Pathogenic Fungi Are Host to Diverse Mycoviruses. Microbiol Spectr 2022; 10:e0161022. [PMID: 35993766 PMCID: PMC9603141 DOI: 10.1128/spectrum.01610-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi host viruses from many families, and next-generation sequencing can be used to discover previously unknown genomes. Some fungus-infecting viruses (mycoviruses) confer hypovirulence on their pathogenic hosts, raising the possibility of therapeutic application in the treatment of fungal diseases. Though all fungi probably host mycoviruses, many human pathogens have none documented, implying the mycoviral catalogue remains at an early stage. Here, we carried out virus discovery on 61 cultures of pathogenic fungi covering 27 genera and at least 56 species. Using next-generation sequencing of total nucleic acids, we found no DNA viruses but did find a surprising RNA virus diversity of 11 genomes from six classified families and two unclassified lineages, including eight genomes likely representing new species. Among these was the first jivivirus detected in a fungal host (Aspergillus lentulus). We separately utilized rolling circle amplification and next-generation sequencing to identify ssDNA viruses specifically. We identified 13 new cressdnaviruses across all libraries, but unlike the RNA viruses, they could not be confirmed by PCR in either the original unamplified samples or freshly amplified nucleic acids. Their distributions among sequencing libraries and inconsistent detection suggest low-level contamination of reagents. This highlights both the importance of validation assays and the risks of viral host prediction on the basis of highly amplified sequencing libraries. Meanwhile, the detected RNA viruses provide a basis for experimentation to characterize possible hypovirulent effects, and hint at a wealth of uncharted viral diversity currently frozen in biobanks. IMPORTANCE Fungal pathogens of humans are a growing global health burden. Viruses of fungi may represent future therapeutic tools, but for many fungal pathogens there are no known viruses. Our study examined the viral content of diverse human-pathogenic fungi in a clinical biobank, identifying numerous viral genomes, including one lineage previously not known to infect fungi.
Collapse
Affiliation(s)
- Cormac M. Kinsella
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - H. M. Gittelbauer
- Amsterdam UMC, Laboratory of Mycology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
| | - Lia van der Hoek
- Amsterdam UMC, Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karin van Dijk
- Amsterdam UMC, Laboratory of Mycology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Ortiz-Baez AS, Holmes EC, Charon J, Pettersson JHO, Hesson JC. Meta-transcriptomics reveals potential virus transfer between Aedes communis mosquitoes and their parasitic water mites. Virus Evol 2022; 8:veac090. [PMID: 36320615 PMCID: PMC9604308 DOI: 10.1093/ve/veac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
Arthropods harbor a largely undocumented diversity of RNA viruses. Some arthropods, like mosquitoes, can transmit viruses to vertebrates but are themselves parasitized by other arthropod species, such as mites. Very little is known about the viruses of these ectoparasites and how they move through the host-parasite relationship. To address this, we determined the virome of both mosquitoes and the mites that feed on them. The mosquito Aedes communis is an abundant and widely distributed species in Sweden, in northern Europe. These dipterans are commonly parasitized by water mite larvae (Trombidiformes: Mideopsidae) that are hypothesized to impose negative selection pressures on the mosquito by reducing fitness. In turn, viruses are dual-host agents in the mosquito-mite interaction. We determined the RNA virus diversity of mite-free and mite-detached mosquitoes, as well as their parasitic mites, using meta-transcriptomic sequencing. Our results revealed an extensive RNA virus diversity in both mites and mosquitoes, including thirty-seven putative novel RNA viruses that cover a wide taxonomic range. Notably, a high proportion of viruses (20/37) were shared between mites and mosquitoes, while a limited number of viruses were present in a single host. Comparisons of virus composition and abundance suggest potential virus transfer between mosquitoes and mites during their symbiotic interaction. These findings shed light on virome diversity and ecology in the context of arthropod host-parasite-virus relationships.
Collapse
Affiliation(s)
- Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - John H-O Pettersson
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, Dag Hammarskjölds väg 38, Uppsala SE-751 85, Sweden
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, C8:3, Uppsala SE-751 23, Sweden
| | - Jenny C Hesson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, University of Uppsala, Husargatan 3, C8:3, Uppsala SE-751 23, Sweden
- Biologisk Myggkontroll, Nedre Dalälven Utvecklings AB, Vårdsätravägen 5, Uppsala SE 75646, Sweden
| |
Collapse
|
13
|
Stenberg H, Hellman S, Lindström L, Jacobson M, Fossum C, Hayer J, Malmberg M. Congenital tremor and splay leg in piglets – insights into the virome, local cytokine response, and histology. BMC Vet Res 2022; 18:348. [PMID: 36109741 PMCID: PMC9479355 DOI: 10.1186/s12917-022-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Atypical porcine pestivirus (APPV) is a neurotropic virus associated with congenital tremor type A-II. A few experimental studies also indicate an association between APPV and splay leg. The overarching aim of the present study was to provide insights into the virome, local cytokine response, and histology of the CNS in piglets with signs of congenital tremor or splay leg.
Results
Characterization of the cytokine profile and virome of the brain in piglets with signs of congenital tremor revealed an APPV-associated upregulation of Stimulator of interferon genes (STING). The upregulation of STING was associated with an increased expression of the gene encoding IFN-α but no differential expression was recorded for the genes encoding CXCL8, IFN-β, IFN-γ, IL-1β, IL-6, or IL-10. No viral agents or cytokine upregulation could be detected in the spinal cord of piglets with signs of splay leg or in the brain of piglets without an APPV-infection. The histopathological examination showed no lesions in the CNS that could be attributed to the APPV-infection, as no difference between sick and healthy piglets could be seen.
Conclusion
The results from this study provide evidence of an APPV-induced antiviral cytokine response but found no lesions related to the infection nor any support for a common causative agent.
Collapse
|
14
|
Van Brussel K, Wang X, Shi M, Carrai M, Feng S, Li J, Holmes EC, Beatty JA, Barrs VR. The enteric virome of cats with feline panleukopenia differs in abundance and diversity from healthy cats. Transbound Emerg Dis 2022; 69:e2952-e2966. [PMID: 35765950 PMCID: PMC9796298 DOI: 10.1111/tbed.14646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 06/18/2022] [Indexed: 01/01/2023]
Abstract
Feline panleukopenia (FPL) is a severe, often fatal disease caused by feline panleukopenia virus (FPV). How infection with FPV might impact the composition of the entire eukaryotic enteric virome in cats has not been characterized. We used meta-transcriptomic and viral particle enrichment metagenomic approaches to characterize the enteric viromes of 23 cats naturally infected with FPV (FPV-cases) and 36 age-matched healthy shelter cats (healthy controls). Sequencing reads from mammalian infecting viral families largely belonged to the Coronaviridae, Parvoviridae and Astroviridae. The most abundant viruses among the healthy control cats were feline coronavirus, Mamastrovirus 2 and Carnivore bocaparvovirus 3 (feline bocavirus), with frequent coinfections of all three. Feline chaphamaparvovirus was only detected in healthy controls (6 out of 36, 16.7%). Among the FPV-cases, in addition to FPV, the most abundant viruses were Mamastrovirus 2, feline coronavirus and C. bocaparvovirus 4 (feline bocaparvovirus 2). The latter and feline bocaparvovirus 3 were detected significantly more frequently in FPV-cases than in healthy controls. Feline calicivirus was present in a higher proportion of FPV-cases (11 out of 23, 47.8%) compared to healthy controls (5 out of 36, 13.9%, p = 0.0067). Feline kobuvirus infections were also common among FPV-cases (9 out of 23, 39.1%) and were not detected in any healthy controls (p < .0001). While abundant in both groups, astroviruses were more frequently present in FPV-cases (19 out of 23, 82.6%) than in healthy controls (18 out of 36, p = .0142). The differences in eukaryotic virome composition revealed here indicate that further investigations are warranted to determine associations between enteric viral co-infections on clinical disease severity in cats with FPL.
Collapse
Affiliation(s)
- Kate Van Brussel
- School of Veterinary ScienceFaculty of ScienceUniversity of SydneySydneyNew South WalesAustralia,Sydney Institute for Infectious DiseasesSchool of Life and Environmental Sciences and School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Xiuwan Wang
- Jockey Club College of Veterinary Medicine & Life SciencesCentre for Animal Health and WelfareCity University of Hong KongKowloon TongHong KongChina
| | - Mang Shi
- Sydney Institute for Infectious DiseasesSchool of Life and Environmental Sciences and School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia,School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Maura Carrai
- Jockey Club College of Veterinary Medicine & Life SciencesCentre for Animal Health and WelfareCity University of Hong KongKowloon TongHong KongChina
| | - Shuo Feng
- Jockey Club College of Veterinary Medicine & Life SciencesCentre for Animal Health and WelfareCity University of Hong KongKowloon TongHong KongChina
| | - Jun Li
- Jockey Club College of Veterinary Medicine & Life SciencesCentre for Animal Health and WelfareCity University of Hong KongKowloon TongHong KongChina,School of Data ScienceCity University of Hong KongHong KongChina
| | - Edward C. Holmes
- Sydney Institute for Infectious DiseasesSchool of Life and Environmental Sciences and School of Medical SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Julia A. Beatty
- School of Veterinary ScienceFaculty of ScienceUniversity of SydneySydneyNew South WalesAustralia,Jockey Club College of Veterinary Medicine & Life SciencesCentre for Animal Health and WelfareCity University of Hong KongKowloon TongHong KongChina,Centre for Animal Health and WelfareCity University of Hong KongHong KongChina
| | - Vanessa R. Barrs
- School of Veterinary ScienceFaculty of ScienceUniversity of SydneySydneyNew South WalesAustralia,Jockey Club College of Veterinary Medicine & Life SciencesCentre for Animal Health and WelfareCity University of Hong KongKowloon TongHong KongChina,Centre for Animal Health and WelfareCity University of Hong KongHong KongChina
| |
Collapse
|
15
|
Metatranscriptomic Comparison of Viromes in Endemic and Introduced Passerines in New Zealand. Viruses 2022; 14:v14071364. [PMID: 35891346 PMCID: PMC9321414 DOI: 10.3390/v14071364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
New Zealand/Aotearoa has many endemic passerine birds vulnerable to emerging infectious diseases. Yet little is known about viruses in passerines, and in some countries, including New Zealand, the virome of wild passerines has been only scarcely researched. Using metatranscriptomic sequencing we characterised the virome of New Zealand endemic and introduced species of passerine. Accordingly, we identified 34 possible avian viruses from cloacal swabs of 12 endemic and introduced bird species not showing signs of disease. These included a novel siadenovirus, iltovirus, and avastrovirus in the Eurasian blackbird (Turdus merula, an introduced species), song thrush (Turdus philomelos, introduced) and silvereye/tauhou (Zosterops lateralis, introduced), respectively. This is the first time novel viruses from these genera have been identified in New Zealand, likely reflecting prior undersampling. It also represents the first identification of an iltovirus and siadenovirus in blackbirds and thrushes globally. These three viruses were only found in introduced species and may pose a risk to endemic species if they were to jump species boundaries, particularly the iltoviruses and siadenoviruses that have a prior history of disease associations. Further virus study and surveillance are needed in New Zealand avifauna, particularly in Turdus populations and endemic species.
Collapse
|
16
|
French R, Charon J, Lay CL, Muller C, Holmes EC. Human Land-Use Impacts Viral Diversity and Abundance in a New Zealand River. Virus Evol 2022; 8:veac032. [PMID: 35494173 PMCID: PMC9049113 DOI: 10.1093/ve/veac032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Although water-borne viruses have important implications for the health of humans and other animals, little is known about the impact of human land use on viral diversity and evolution in water systems such as rivers. We used metatranscriptomic sequencing to compare the diversity and abundance of viruses at sampling sites along a single river in New Zealand that differed in human land-use impacts, ranging from pristine to urban. From this, we identified 504 putative virus species, of which 97 per cent were novel. Many of the novel viruses were highly divergent and likely included a new subfamily within the Parvoviridae. We identified at least sixty-three virus species that may infect vertebrates—most likely fish and water birds—from the Astroviridae, Birnaviridae, Parvoviridae, and Picornaviridae. No putative human viruses were detected. Importantly, we observed differences in the composition of viral communities at sites impacted by human land use (farming and urban) compared to native forest sites (pristine). At the viral species level, the urban sites had higher diversity (327 virus species) than the farming (n = 150) and pristine sites (n = 119), and more viruses were shared between the urban and farming sites (n = 76) than between the pristine and farming or urban sites (n = 24). The two farming sites had a lower viral abundance across all host types, while the pristine sites had a higher abundance of viruses associated with animals, plants, and fungi. We also identified viruses linked to agriculture and human impact at the river sampling sites in farming and urban areas that were not present at the native forest sites. Although based on a small sample size, our study suggests that human land use can impact viral communities in rivers, such that further work is needed to reduce the impact of intensive farming and urbanisation on water systems.
Collapse
Affiliation(s)
- Rebecca French
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Justine Charon
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Callum Le Lay
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Chris Muller
- Wildbase, School of Veterinary Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
17
|
Zoonotic disease and virome diversity in bats. Curr Opin Virol 2021; 52:192-202. [PMID: 34954661 PMCID: PMC8696223 DOI: 10.1016/j.coviro.2021.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
The emergence of zoonotic viral diseases in humans commonly reflects exposure to mammalian wildlife. Bats (order Chiroptera) are arguably the most important mammalian reservoir for zoonotic viruses, with notable examples including Severe Acute Respiratory Syndrome coronaviruses 1 and 2, Middle East Respiratory Syndrome coronavirus, henipaviruses and lyssaviruses. Herein, we outline our current knowledge on the diversity of bat viromes, particularly through the lens of metagenomic next-generation sequencing and in the context of disease emergence. A key conclusion is that although bats harbour abundant virus diversity, the vast majority of bat viruses have not emerged to cause disease in new hosts such that bats are better regarded as critical but endangered components of global ecosystems.
Collapse
|
18
|
Diverse Single-Stranded DNA Viruses Identified in Chicken Buccal Swabs. Microorganisms 2021; 9:microorganisms9122602. [PMID: 34946202 PMCID: PMC8703526 DOI: 10.3390/microorganisms9122602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.
Collapse
|