1
|
Warring SL, Sisson HM, Fineran PC, Rabiey M. Strategies for the biocontrol Pseudomonas infections pre-fruit harvest. Microb Biotechnol 2024; 17:e70017. [PMID: 39364588 PMCID: PMC11450377 DOI: 10.1111/1751-7915.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
The efficiency of global crop production is under threat from microbial pathogens which is likely to be worsened by climate change. Major contributors to plant disease are Pseudomonas syringae (P. syringae) pathovars which affect a variety of important crops. This opinion piece focuses on P. syringae pathovars actinidiae and syringae, which affect kiwifruit and stone fruits, respectively. We discuss some of the current control strategies for these pathogens and highlight recent research developments in combined biocontrol agents such as bacteriophages and combinations of bacteriophages with known anti-microbials such as antibiotics and bacteriocins.
Collapse
Affiliation(s)
- Suzanne L. Warring
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of OtagoDunedinNew Zealand
| | - Hazel M. Sisson
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Bioprotection Aotearoa, University of OtagoDunedinNew Zealand
- Genetics OtagoDunedinNew Zealand
| | - Peter C. Fineran
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
- Bioprotection Aotearoa, University of OtagoDunedinNew Zealand
- Genetics OtagoDunedinNew Zealand
| | - Mojgan Rabiey
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
2
|
Périat C, Kuhn T, Buffi M, Corona-Ramirez A, Fatton M, Cailleau G, Chain PS, Stanley CE, Wick LY, Bindschedler S, Gonzalez D, Li Richter XY, Junier P. Host and nonhost bacteria support bacteriophage dissemination along mycelia and abiotic dispersal networks. MICROLIFE 2024; 5:uqae004. [PMID: 38463165 PMCID: PMC10924533 DOI: 10.1093/femsml/uqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Bacteriophages play a crucial role in shaping bacterial communities, yet the mechanisms by which nonmotile bacteriophages interact with their hosts remain poorly understood. This knowledge gap is especially pronounced in structured environments like soil, where spatial constraints and air-filled zones hinder aqueous diffusion. In soil, hyphae of filamentous microorganisms form a network of 'fungal highways' (FHs) that facilitate the dispersal of other microorganisms. We propose that FHs also promote bacteriophage dissemination. Viral particles can diffuse in liquid films surrounding hyphae or be transported by infectable (host) or uninfectable (nonhost) bacterial carriers coexisting on FH networks. To test this, two bacteriophages that infect Pseudomonas putida DSM291 (host) but not KT2440 (nonhost) were used. In the absence of carriers, bacteriophages showed limited diffusion on 3D-printed abiotic networks, but diffusion was significantly improved in Pythium ultimum-formed FHs when the number of connecting hyphae exceeded 20. Transport by both host and nonhost carriers enhanced bacteriophage dissemination. Host carriers were five times more effective in transporting bacteriophages, particularly in FHs with over 30 connecting hyphae. This study enhances our understanding of bacteriophage dissemination in nonsaturated environments like soils, highlighting the importance of biotic networks and bacterial hosts in facilitating this process.
Collapse
Affiliation(s)
- Claire Périat
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Matteo Buffi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Andrea Corona-Ramirez
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Mathilda Fatton
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Patrick S Chain
- Los Alamos National Laboratory, Bioscience Division, P.O. Box 1663, NM 87545, Los Alamos, United States
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, B304, Bessemer Building, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
3
|
Abedon ST. Bacteriophage Adsorption: Likelihood of Virion Encounter with Bacteria and Other Factors Affecting Rates. Antibiotics (Basel) 2023; 12:723. [PMID: 37107086 PMCID: PMC10135360 DOI: 10.3390/antibiotics12040723] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
For ideal gasses, the likelihood of collision of two molecules is a function of concentrations as well as environmental factors such as temperature. This too is the case for particles diffusing within liquids. Two such particles are bacteria and their viruses, the latter called bacteriophages or phages. Here, I review the basic process of predicting the likelihoods of phage collision with bacteria. This is a key step governing rates of phage-virion adsorption to their bacterial hosts, thereby underlying a large fraction of the potential for a given phage concentration to affect a susceptible bacterial population. Understanding what can influence those rates is very relevant to appreciating both phage ecology and the phage therapy of bacterial infections, i.e., where phages are used to augment or replace antibiotics; so too adsorption rates are highly important for predicting the potential for phage-mediated biological control of environmental bacteria. Particularly emphasized here, however, are numerous complications on phage adsorption rates beyond as dictated by the ideals of standard adsorption theory. These include movements other than due to diffusion, various hindrances to diffusive movement, and the influence of assorted heterogeneities. Considered chiefly are the biological consequences of these various phenomena rather than their mathematical underpinnings.
Collapse
|
4
|
Probst M, Telagathoti A, Siewert B, Khomenko I, Betta E, Biasioli F, Peintner U. Co-cultivation of Mortierellaceae with Pseudomonas helmanticensis affects both their growth and volatilome. Sci Rep 2023; 13:2213. [PMID: 36750680 PMCID: PMC9905594 DOI: 10.1038/s41598-023-29134-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Volatile organic compounds (VOCs) might mediate microbial interactions, especially in spatially structured environments, such as soil. However, the variety and specificity of VOC production are poorly understood. Here, we studied 25 Mortierellaceae strains belonging to the genera Linnemannia and Entomortierella in both pure and co-culture with Pseudomonas helmanticensis under laboratory conditions. We analysed both the fungal growth depending on co-cultivation and the cultures' volatilomes applying proton-transfer-reaction time-of-flight and gas chromatography-mass spectrometry (PTR-ToF-MS and GC-MS). In a strain-specific manner, we found the fungi's radial growth rate and colony morphology affected by the presence of P. helmanticensis. The fungus seemed to generally reduce the bacterial growth. The volatilomes of the fungal and bacterial pure and co-cultures were diverse. While the fungi frequently consumed VOCs, P. helmanticensis produced a higher diversity and amount of VOCs than any fungal strain. Our results support that both the pure and co-culture volatilomes are taxonomically conserved. Taken together, our data supports the relevance of VOCs in Mortierellaceae-P. helmanticensis interaction. We also discuss individual VOCs that appear relevant in the interaction.
Collapse
Affiliation(s)
- Maraike Probst
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Anusha Telagathoti
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Bianka Siewert
- Institute of Pharmacy, Center for Chemistry and Biomedicine, Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, Innrain 80 - 82/IV, 6020, Innsbruck, Austria
| | - Iuliia Khomenko
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, Italy
| | - Emanuela Betta
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, Italy
| | - Ursula Peintner
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|