1
|
Omara D, Natwijuka F, Kapaata A, Kato F, Kato L, Ndekezi C, Nakyanzi A, Ayebale ML, Yue L, Hunter E, Sande OJ, Ochsenbauer C, Kaleebu P, Balinda SN. Subtype AD Recombinant HIV-1 Transmitted/Founder Viruses Are Less Sensitive to Type I Interferons than Subtype D. Viruses 2025; 17:486. [PMID: 40284929 PMCID: PMC12031311 DOI: 10.3390/v17040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Initial interactions between HIV-1 and the immune system at mucosal exposure sites play a critical role in determining whether the virus is eliminated or progresses to establish systemic infection. The virus that successfully crosses the mucosal barrier to establish infection in the new host is referred to as the transmitted/founder (TF) virus. Following mucosal HIV-1 transmission, type 1 interferons (IFN-I) are rapidly induced at sites of initial virus replication. The resistance of TF variants to these antiviral effects of the IFN-I has been studied among HIV-1 subtypes B and C. However, their role in restricting HIV-1 replication among subtypes D and AD recombinant remains unexplored. This study assessed the sensitivity of HIV-1 subtype D and AD recombinant TF viruses to IFN-I by infecting peripheral blood mononuclear cells in vitro with infectious molecular clones of these viruses. Cells were exposed to varying concentrations of interferon-α and interferon-β, and viral replicative capacity was measured using HIV-1 p24 antigen ELISA from culture supernatants. Sensitivity to IFN-I was quantified based on viral replication levels. The results showed that interferon-α was more effective in inhibiting viral replication than interferon-β, regardless of the varying amounts of IFN-I used. However, recombinant AD viruses were found to be more resistant to the antiviral effects of IFN-I compared to subtype D viruses. These findings highlight the differential sensitivity of HIV-1 subtypes AD recombinant and D TF viruses to IFN-I and underscore the potential of IFN-I as a therapeutic strategy to target TF viruses and reduce HIV-1 transmission, particularly in populations where subtype D is prevalent.
Collapse
Affiliation(s)
- Denis Omara
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Fortunate Natwijuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Anne Kapaata
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Frank Kato
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Laban Kato
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Christian Ndekezi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Angella Nakyanzi
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| | - Mercy L. Ayebale
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Ling Yue
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (E.H.)
| | - Eric Hunter
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (E.H.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| | - Sheila N. Balinda
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| |
Collapse
|
2
|
Kmiec D, Kirchhoff F. Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered. J Mol Cell Biol 2024; 16:mjae005. [PMID: 38318650 PMCID: PMC11334937 DOI: 10.1093/jmcb/mjae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Nzimande B, Makhwitine JP, Mkhwanazi NP, Ndlovu SI. Developments in Exploring Fungal Secondary Metabolites as Antiviral Compounds and Advances in HIV-1 Inhibitor Screening Assays. Viruses 2023; 15:v15051039. [PMID: 37243125 DOI: 10.3390/v15051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant concern. Therefore, there is a continuous need to discover and develop new, safer, and effective drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention as alternative sources of anti-HIV compounds or immunomodulators that can escape the current barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in the search for fungal species with the capacity to produce anti-HIV compounds. This review provides insights into the recent research developments on natural products produced by fungal species, particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study, we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various activity assays developed for gauging antiviral activity production from microbial sources since they are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we explore fungal secondary metabolites compounds that have been characterized at the structural level and demonstrate their potential as inhibitors of various HIV-1 target sites.
Collapse
Affiliation(s)
- Bruce Nzimande
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - John P Makhwitine
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nompumelelo P Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
4
|
Prévost J, Anand SP, Rajashekar JK, Zhu L, Richard J, Goyette G, Medjahed H, Gendron-Lepage G, Chen HC, Chen Y, Horwitz JA, Grunst MW, Zolla-Pazner S, Haynes BF, Burton DR, Flavell RA, Kirchhoff F, Hahn BH, Smith AB, Pazgier M, Nussenzweig MC, Kumar P, Finzi A. HIV-1 Vpu restricts Fc-mediated effector functions in vivo. Cell Rep 2022; 41:111624. [PMID: 36351384 PMCID: PMC9703018 DOI: 10.1016/j.celrep.2022.111624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Non-neutralizing antibodies (nnAbs) can eliminate HIV-1-infected cells via antibody-dependent cellular cytotoxicity (ADCC) and were identified as a correlate of protection in the RV144 vaccine trial. Fc-mediated effector functions of nnAbs were recently shown to alter the course of HIV-1 infection in vivo using a vpu-defective virus. Since Vpu is known to downregulate cell-surface CD4, which triggers conformational changes in the viral envelope glycoprotein (Env), we ask whether the lack of Vpu expression was linked to the observed nnAbs activity. We find that restoring Vpu expression greatly reduces nnAb recognition of infected cells, rendering them resistant to ADCC. Moreover, administration of nnAbs in humanized mice reduces viral loads only in animals infected with a vpu-defective but not with a wild-type virus. CD4-mimetics administration, known to "open" Env and expose nnAb epitopes, renders wild-type viruses sensitive to nnAbs Fc-effector functions. This work highlights the importance of Vpu-mediated evasion of humoral responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jyothi Krishnaswamy Rajashekar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Yaozong Chen
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michael W Grunst
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), Duke University, Durham, NC 27710, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02139, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|