1
|
Jian Y, Lu C, Shi Y, Kong X, Song J, Wang J. Genetic evolution analysis of PRRSV ORF5 gene in five provinces of Northern China in 2024. BMC Vet Res 2025; 21:242. [PMID: 40176022 PMCID: PMC11966811 DOI: 10.1186/s12917-025-04679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) was first discovered in North America in 1987, and since then it has been spread widely all over the world. The prevalence of PRRS has caused significantly economic losses to pig industry in many countries. OBJECTIVES Investigate the prevalence and genetic evolution of porcine reproductive and respiratory syndrome virus (PRRSV) in five provinces of northern China. METHODS 190 samples suspected of PRRS were collected from 28 pig farms in five provinces of northern China. The PRRSV ORF7 and ORF5 gene were detected by RT-PCR, and the ORF5 gene were sequenced for the homology and genetic evolution analysis. RESULTS The positive samples of ORF7 gene were 50, and its positive rate was 26.32%. The positive samples of ORF5 gene were 48, and its positive rate was 25.26%. The sequenced results of the ORF5 gene showed that 48 positive samples all belonged to PRRSV-2. Among them, 26 samples were NADC34-like strains, 17 samples were NADC30-like strains, and 5 samples were classical strains. The amino acid sequence analysis of PRRSV GP5 indicated that there was a deletion at the 37th amino acid in 4 NADC30-like strains. The amino acids of the transmembrane region 1 in all positive strains are relatively conserved, and multiple amino acid mutations were observed in the signal peptide, transmembrane region 2, and B cell epitope. The amino acid mutations were different in different strains and regions. The above results demonstrated that the complexity and diversity of PRRSV genetics. CONCLUSION The strains from lineage 1 became the dominant strains in five provinces of northern China in 2024. The positive rate of NADC34-like strains was the highest in Heilongjiang Province and the NADC30-like strains were the most prevalent in these regions. The genetic evolution of PRRSV presented a complex trend. This study provided the data support for understanding PRRSV variation and for PRRS prevention and control in five provinces of northern China.
Collapse
Affiliation(s)
- Yanyin Jian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chun Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuan Shi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiangyu Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jun Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jintao Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
2
|
Li Y, Yang C, Li XL, Sun JY, Cheng N, Wang KY, Sun YF. Etiological characterization of multiple recombinant lineages of TJ-C6 porcine reproductive and respiratory syndrome virus in Tianjin, Northern China. Vet Res Commun 2025; 49:91. [PMID: 39869226 DOI: 10.1007/s11259-025-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Recent outbreaks of PRRSV in live attenuated vaccine-immunized pig farms in Tianjin, China have raised questions about the etiological characteristics and pathogenicity of the PRRSV variant, which remains unknown. In this study, a multiple lineages recombinant PRRSV strain named TJ-C6, was isolated and identified. Phylogenetic trees and genome homology analyses revealed that TJ-C6 belonged to lineage 1.8 (NADC30-like) and with similar 131 discontinuous amino acid deletion pattern (111-aa + 1-a + 19-aa) in Nsp2-coding region, but it was classified in lineage 1.5 (NADC34-like) cluster based on ORF5 sequence. Furthermore, the recombination analyses revealed that TJ-C6 was a multiple recombinant virus among lineage 1.5(NADC34- like), lineage 1.8(NADC30- like), and lineage 3(GM2-Like) strains with four recombination breakpoints in Nsp9 (nt 7298/8111), ORF2 (nt 12213) and ORF6 (nt 14628), which was different from the previously prevalent PRRSV strain. Challenge experiments with 3-week-old piglets showed that TJ-C6 could cause piglets high fever, loss of appetite and severely histopathological lung lesions. Taken altogether, multiple co-circulating lineages of PRRSV strains in the swine population are accelerating the emergence of natural recombinant strains with variations in pathogenicity and highlight the importance of surveillance of newly emerging PRRSV strains in China.
Collapse
Affiliation(s)
- Yong Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
- Boehringer Ingelheim Animal Health (Shanghai) Co. Ltd., Shanghai, 200040, China
| | - Cheng Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Xin-Lei Li
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Jiu-Ying Sun
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Ning Cheng
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Kai-Yue Wang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China
| | - Ying-Feng Sun
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No.22, Jinjing Road, Xiqing District, Tianjin, 300384, China.
| |
Collapse
|
3
|
Jeong H, Eo Y, Lee D, Jang G, Min KC, Choi AK, Won H, Cho J, Kang SC, Lee C. Comparative Genomic and Biological Investigation of NADC30- and NADC34-Like PRRSV Strains Isolated in South Korea. Transbound Emerg Dis 2025; 2025:9015349. [PMID: 40302751 PMCID: PMC12016814 DOI: 10.1155/tbed/9015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally endemic, costly swine arterivirus with wide genetic and antigenic variations, leading to the frequent appearance of novel virulent strains that hampers PRRSV control. Recently, NADC30-like (lineage 1C, L1C) and NADC34-like (lineage 1A, L1A) PRRSV strains were reported to be prevalent in mainland South Korea and became the main epidemic strains persistently attributed to PRRSV outbreaks nationwide, raising great concern in the domestic pork industry. Although the genotypic and pathotypic variability of NADC30- and NADC34-like viruses has been explored in the United States and China, their genomic and biological characteristics have been scarcely studied in South Korea. Here, NADC34-like GNU-2353 and NADC30-like GNU-2377 strains were independently identified from vaccinated swine herds experiencing high piglet mortality. Whole-genome sequencing and phylogenetic analysis revealed that GNU-2353 and GNU-2377 clustered into sublineages L1A (NADC34-like) and L1C (NADC30-like), respectively, sharing high genomic homology with their corresponding lineage-representative strains and harboring the same molecular signatures of continuous 100 and discontinuous 131 amino acid deletions in the nsp2-coding region, respectively. Recombination detection indicated that GNU-2353 and GNU-2377 were recombinants and evolved through natural interlineage recombination between NADC34-like (L1A, major parent) or NADC30-like (L1C, major parent) and RespPRRS modified live virus (MLV)-like (lineage 5, minor parent) strains, respectively. Both viruses displayed homogenous growth kinetics but replicated faster than the prototype VR-2332 in a porcine alveolar macrophage cell line (PAM-KNU). The transcriptional profiles of immune response genes in infected PAM-KNU cells varied between the isolates and VR-2332; particularly, interleukin-10 expression was dramatically upregulated in cells infected with GNU-2353 and GNU-2377. Piglets with GNU-2353 and GNU-2377 infection had high fever; weight loss; increased viremia and nasal shedding; viral distribution in various tissues; thymic atrophy; and apparent macroscopic and microscopic lung lesions, including interstitial pneumonia and viral colonization, compared with control piglets, suggesting that both isolates were virulent to pigs. Remarkably, GNU-2353 caused higher fever, mortality rate (40%) with cyanosis, viremia, and viral shedding within 2 weeks and significantly higher viral loads in several organs than GNU-2377 infection. Thus, NADC34-like GNU-2353 was more pathogenic than NADC30-like GNU-2377. Our findings provide insights into the current epizootic circumstance of NADC30- and NADC34-like PRRSV in South Korea and can aid in tailoring improved control strategies.
Collapse
Affiliation(s)
- Haemin Jeong
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youngjoon Eo
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | - Duri Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeng-Cheol Min
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - An Kook Choi
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Hokeun Won
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Jungjoon Cho
- SoJung Animal Hospital, Yesan 32416, Republic of Korea
| | | | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Tao C, Zhu X, Huang Y, Yuan W, Wang Z, Zhu H, Jia H. Development of a Multiplex RT-qPCR Method for the Identification and Lineage Typing of Porcine Reproductive and Respiratory Syndrome Virus. Int J Mol Sci 2024; 25:13203. [PMID: 39684913 DOI: 10.3390/ijms252313203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen that causes porcine reproductive and respiratory syndrome (PRRS), leading to abortion of sows and the manifestation of respiratory diseases in piglets. PRRSV strains are categorized into two distinct genotypes: PRRSV-1 and PRRSV-2. PRRSV-2 can be further classified into several lineages, including sub-lineage 1.8 (NADC30-like), sub-lineage 1.5 (NADC34-like), lineage 8 (HP-PRRSV-like), lineage 5 (VR-2332-like), and lineage 3 (QYYZ-like), all of which are prevalent in China. In order to identify PRRSV-1 and PRRSV-2, two primer-probe combinations were designed, targeting the M gene. In order to further differentiate the five lineages of PRRSV-2, another five primer-probe combinations were designed, targeting the Nsp2 gene. A TaqMan-based multiplex RT-qPCR assay was subsequently developed, integrating the aforementioned seven sets into two primer pools. Following the optimization of primer concentration and annealing temperature, a comprehensive evaluation was conducted to assess the assay's amplification efficiency, specificity, repeatability, and sensitivity. The developed multiplex RT-qPCR method exhibited excellent repeatability, with coefficients of variation (CVs) less than 2.12%. The detection limits for all seven targets were found to be less than 5 copies/μL. Ultimately, the method was utilized for the detection of a total of 1009 clinical samples, with a PRRSV-positive rate of 7.63% (77/1009). Specifically, the reference method was utilized to further confirm the status of the 77 PRRSV-positive samples and another 27 samples suspected of PRRSV infection. The sensitivity of the method was 97.40% (75/77), and the specificity was 96.30% (26/27), resulting in an overall coincidence rate of 97.12% (101/104). All the PRRSV-positive samples were typed as NADC30-like strains, and the accuracy of this typing was further confirmed by Sanger sequencing. In conclusion, A one-step multiplex RT-qPCR method was successfully constructed, evaluated, and applied to detect clinical samples. The assay provides an easy-to-operate, time-saving, and highly efficient way for the quick identification of PRRSV and simultaneous detection of five PRRSV-2 lineages prevalent in China. The method could offer guidance for PRRSV prevention and control measures.
Collapse
Affiliation(s)
- Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xizhou Zhu
- Bioproducts Engineering Center, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Rimayanti R, Khairullah AR, Lestari TD, Hernawati T, Mulyati S, Utama S, Damayanti R, Moses IB, Yanestria SM, Kusala MKJ, Raissa R, Fauziah I, Wibowo S, Prasetyo A, Awwanah M, Fauzia KA. Porcine reproductive and respiratory syndrome developments: An in-depth review of recent findings. Open Vet J 2024; 14:2138-2152. [PMID: 39553781 PMCID: PMC11563630 DOI: 10.5455/ovj.2024.v14.i9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) belonging to the Arteriviridae family is the cause of PRRS disease. After being discovered for the first time in the United States in 1987, this illness quickly expanded to Canada. The disease was initially discovered in late 1990 in Germany, from where it quickly spread throughout Europe. The consequences of PRRSV lead to a number of epidemiological issues, including a sickness with a delayed immune response that permits extended viremia, which facilitates viral transmission. The virus penetrates the nasal epithelium, tonsils, lung macrophages, and uterine endometrium through the oronasal and genital pathways. Abortions performed late in pregnancy and premature or delayed deliveries resulting in dead and mummified fetuses, stillborn pigs, and weakly born piglets are indicative of reproductive syndrome. In the meanwhile, dyspnea, fever, anorexia, and lethargic behavior are signs of respiratory syndrome. The virus can be isolated from the tissue or serum of animals that have been infected to confirm the diagnosis. Pig movements and potential airborne dissemination are two ways that the virus can enter new herds and propagate through nose-to-nose contact or aerosols. Various supportive therapies may enhance infant survival, and antibiotics may or may not lessen the impact of secondary bacterial infections. The absence of simple diagnostic tests, the virus's airborne transmission, the occurrence of subclinical infections, and the virus's persistence in infected populations have all contributed to the failure of control efforts for PRRS.
Collapse
Affiliation(s)
- Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agung Prasetyo
- Research Center for Estate Crops, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
6
|
Huang B, Deng L, Xu T, Jian Z, Lai S, Ai Y, Xu Z, Zhu L. Isolation and pathogenicity comparison of two novel natural recombinant porcine reproductive and respiratory syndrome viruses with different recombination patterns in Southwest China. Microbiol Spectr 2024; 12:e0407123. [PMID: 38511956 PMCID: PMC11064529 DOI: 10.1128/spectrum.04071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the swine industry. Frequent mutations and recombinations account for PRRSV immune evasion and the emergence of novel strains. In this study, we isolated and characterized two novel PRRSV-2 strains from Southwest China exhibiting distinct recombination patterns. They were designated SCABTC-202305 and SCABTC-202309. Phylogenetic results indicated that SCABTC-202305 was classified as lineage 8, and SCABTC-202309 was classified as lineage 1.8. Amino acid mutation analysis identified unique amino acid substitutions and deletions in ORF5 and Nsp2 genes. The results of the recombination analysis revealed that SCABTC-202305 is a recombinant with JXA1 as the major parental strain and NADC30 as the minor parental strain. At the same time, SCABTC-202309 is identified as a recombinant with NADC30 as the major parental strain and JXA1 as the minor parental strain. In this study, we infected piglets with SCABTC-202305, SCABTC-202309, or mock inoculum (control) to study the pathogenicity of these isolates. Although both isolated strains were pathogenic, SCABTC-202305-infected piglets exhibited more severe clinical signs and higher mortality, viral load, and antibody response than SCABTC-202309-infected piglets. SCABTC-202305 also caused more extensive lung lesions based on histopathology. Our findings suggest that the divergent pathogenicity observed between the two novel PRRSV isolates may be attributed to variations in the genetic information encoded by specific genomic regions. Elucidating the genetic determinants governing PRRSV virulence and transmissibility will inform efforts to control this devastating swine pathogen.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) is one of the most critical pathogens impacting the global swine industry. Frequent mutations and recombinations have made the control of PRRSV increasingly difficult. Following the NADC30-like PRRSV pandemic, recombination events involving PRRSV strains have further increased. We isolated two novel field PRRSV recombinant strains, SCABTC-202305 and SCABTC-202309, exhibiting different recombination patterns and compared their pathogenicity in animal experiments. The isolates caused higher viral loads, persistent fever, marked weight loss, moderate respiratory clinical signs, and severe histopathologic lung lesions in piglets. Elucidating correlations between recombinant regions and pathogenicity in these isolates can inform epidemiologic tracking of emerging strains and investigations into viral adaptive mechanisms underlying PRRSV immunity evasion. Our findings underscore the importance of continued genomic surveillance to curb this economically damaging pathogen.
Collapse
Affiliation(s)
- Bingzhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Chen Y, Huo Z, Jiang Q, Qiu Z, Shao Z, Ma C, Zhang G, Li Q. The Significance of the 98th Amino Acid in GP2a for Porcine Reproductive and Respiratory Syndrome Virus Adaptation in Marc-145 Cells. Viruses 2024; 16:711. [PMID: 38793594 PMCID: PMC11125946 DOI: 10.3390/v16050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the pig industry. Marc-145 cells are widely used for PRRSV isolation, vaccine production, and investigations into virus biological characteristics. Despite their significance in PRRSV research, Marc-145 cells struggle to isolate specific strains of the North American virus genotype (PRRSV-2). The involvement of viral GP2a, GP2b, and GP3 in this phenomenon has been noted. However, the vital amino acids have not yet been identified. In this study, we increased the number of blind passages and successfully isolated two strains that were previously difficult to isolate with Marc-145 cells. Both strains carried an amino acid substitution in GP2a, specifically phenylalanine to leucine at the 98th amino acid position. Through a phylogenetic and epidemiologic analysis of 32 strains, those that were not amenable to isolation widely exhibited this mutation. Then, by using the PRRSV reverse genetics system, IFA, and Western blotting, we identified the mutation that could affect the tropism of PRRSV-2 for Marc-145 cells. Furthermore, an animal experiment was conducted. Through comparisons of clinical signs, mortality rates, and viral load in the organs and sera, we found that mutation did not affect the pathogenicity of PRRSV-2. In conclusion, our study firmly establishes the 98th amino acid in GP2a as a key determinant of PRRSV-2 tropism for Marc-145 cells.
Collapse
Affiliation(s)
- Yao Chen
- School of Life Science and Engineering, Foshan University, Foshan 528011, China; (Y.C.); (Z.H.); (Z.Q.); (C.M.)
| | - Zhantang Huo
- School of Life Science and Engineering, Foshan University, Foshan 528011, China; (Y.C.); (Z.H.); (Z.Q.); (C.M.)
| | - Qi Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China; (Q.J.); (Z.S.); (G.Z.)
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510520, China
| | - Zhiheng Qiu
- School of Life Science and Engineering, Foshan University, Foshan 528011, China; (Y.C.); (Z.H.); (Z.Q.); (C.M.)
| | - Zheng Shao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China; (Q.J.); (Z.S.); (G.Z.)
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510520, China
| | - Chunquan Ma
- School of Life Science and Engineering, Foshan University, Foshan 528011, China; (Y.C.); (Z.H.); (Z.Q.); (C.M.)
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China; (Q.J.); (Z.S.); (G.Z.)
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510520, China
| | - Qi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China; (Q.J.); (Z.S.); (G.Z.)
- MOA Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510520, China
- College of Veterinary and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510520, China
| |
Collapse
|
8
|
Xu S, Liu J, Xing J, Gao H, Zhu D, Xu Z, Zhong J, Li Y, Gao X, Kuang Q, Zhang G, Wang H, Sun Y. A Longitudinal Study of NADC34-Like Strains in an Intensive Farm Unravels Divergent Evolution. Transbound Emerg Dis 2023; 2023:3869145. [PMID: 40303739 PMCID: PMC12016764 DOI: 10.1155/2023/3869145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 05/02/2025]
Abstract
NADC34-like porcine reproductive and respiratory virus (PRRSV) has had a significant impact on the pig industry, particularly in China. However, the evolutionary characteristics and pathogenicity of NADC34-like PRRSV strains within intensive farming systems are not well understood, particularly regarding the biological characteristic variation of successive outbreaks on a farm. In this study, we conducted continuous surveillance in an intensive farm that experienced a PRRSV outbreak. Two PRRSV strains, GDHZ109/2020 and GDYS162/2022, were isolated and fully sequenced from the same swine farm in Guangdong Province in 2020 and 2022, respectively. Evolutionary analysis based on the ORF5 gene revealed that both strains clustered with NADC34-like strains and shared 96.5% homology. Analysis of the full-length genome and NSP2 gene classified the strains into lineage 1.8, represented by the NADC30 strain. Recombination analysis suggested complex recombination patterns for both strains, involving NADC30-like, NADC34-like, and JXA1-like strains. Although many recombinant regions were nearly identical, there were differences observed in the NSP5-NSP7 region. Pathogenicity experiments conducted on piglets demonstrated that GDHZ109/2020 exhibited higher pathogenicity compared to GDYS162/2022. Piglets in the GDHZ109/2020 infected group had more severe clinical signs and higher mortality. Moreover, analysis of respiratory microbial diversity indicated a significant increase in the abundance of potentially pathogenic microbiota, such as Klebsiella and Erysipelothrix contributing to the respiratory tract of PRRSV-infected piglets, suggesting secondary infections due to differences in immune defense. These findings highlight the importance of NADC34-like recombinant strains' evolution during the farm's epidemic period, which may have contributed to changes in pathogenicity. This study improves our understanding of the current prevalence of PRRSV and provides novel insights into the prevention and control of PRRSV.
Collapse
Affiliation(s)
- Sijia Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jing Liu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Han Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Dihua Zhu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Zhiying Xu
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Jianhao Zhong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yue Li
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Xiaopeng Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Qiyuan Kuang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yankuo Sun
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
9
|
Xu H, Li C, Gong B, Li W, Guo Z, Sun Q, Zhao J, Xiang L, Li J, Tang YD, Leng C, Wang Q, Peng J, Zhou G, Liu H, An T, Cai X, Tian ZJ, Zhang H. Protective Efficacy of a Candidate Live-Attenuated Vaccine Derived from the SD-R Strain against NADC34-like Porcine Reproductive and Respiratory Syndrome Virus. Vaccines (Basel) 2023; 11:1349. [PMID: 37631917 PMCID: PMC10459522 DOI: 10.3390/vaccines11081349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) strains were first detected in China in 2017 and became major circulating strains in 2021. Our previous study showed that the live-attenuated vaccine candidate SD-R strain could provide broad cross-protection against different NADC30-like PRRSVs (sublineage 1.8). However, the protective effect of SD-R against NADC34-like PRRSV is unclear. Here, a novel NADC34-like PRRSV, LNTZJ1341-2012, was isolated from a pig farm experiencing disease in 2020. Sequence analysis revealed that LNTZJ1341-2012 belonged to PRRSV-2 sublineage 1.5, exhibited the same Nsp2 amino-acid deletion characteristics as IA/2014/NADC34, and had not recombined with other strains. Additionally, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative NADC34-like strain (LNTZJ1341-2012). The control piglets in the challenge experiment displayed clinical signs typical of PRRSV infection, including transient fever, high viremia, mild clinical symptoms, and histopathological changes in the lungs and submaxillary lymph nodes. In contrast, SD-R vaccination significantly reduced serum and lung tissue viral loads, and vaccinated piglets did not show any clinical symptoms or histopathological changes. Our results demonstrated that LNTZJ1341-2012 is a mildly virulent NADC34-like PRRSV and that the live-attenuated vaccine SD-R can prevent the onset of clinical signs upon challenge with the NADC34-like PRRSV LNTZJ1341-2012 strain, indicating that SD-R is a promising vaccine candidate for the swine industry.
Collapse
Affiliation(s)
- Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Chao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Bangjun Gong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Wansheng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China;
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China; (H.X.); (C.L.); (B.G.); (W.L.); (Z.G.); (Q.S.); (J.Z.); (L.X.); (J.L.); (Y.-D.T.); (Q.W.); (J.P.); (G.Z.); (H.L.); (T.A.); (X.C.); (Z.-J.T.)
| |
Collapse
|