1
|
Biswal JK, Ranjan R, Mohapatra JK, Sahoo NR, Singh RP. Pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting 2B-NSP coding region for colorimetric detection of foot-and-mouth disease virus in clinical samples. Virus Genes 2025:10.1007/s11262-025-02158-y. [PMID: 40285984 DOI: 10.1007/s11262-025-02158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of even-toed animals. Rapid, early, and accurate diagnosis of the disease is important for the swift control of FMD. Although PCR-based assays are being used routinely for the effective diagnosis of FMD, these assays require sophisticated equipment, dedicated manpower, and complex procedures for the detection of amplified viral-genome. Colorimetric isothermal amplification assay with a sharp contrast in colour changes for the positive amplification of viral-genome would be qualified for quick and simple diagnosis of FMDV in both laboratory and field. Here, we report the development and evaluation of FMDV 2B-NSP coding region-based colorimetric RT-LAMP assay for pan-serotypic detection of viral-genome. Addition of 1 mg/ml of bovine serum albumin (BSA) as an additive, could reduce the detection time of the RT-LAMP assay from 60 to 30 min/reaction. Analytical sensitivity test showed that the RT-LAMP assay can detect up to 1000 copies of FMDV genome/reaction, simultaneously, the assay was found specific for the detection of FMDV genome as revealed on testing with serotypes O, A and Asia1 circulating in India during the last two decades. In addition, analysis of 312 clinical samples from various field outbreaks of FMDV in the country showed that RT-LAMP assay exhibited a sensitivity of 96.07%, and a specificity of 100% with an overall accuracy of 97.12%. Therefore, owing to the naked eye distinct visualization of amplified product (pink to yellow colour change), the RT-LAMP assay may facilitate rapid screening of FMD-suspected clinical samples without the use of hazardous DNA-binding dyes and simultaneously prevents aerosolization of amplified product, and subsequent carry over contamination in the diagnostic laboratory.
Collapse
Affiliation(s)
- Jitendra K Biswal
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India.
| | - Rajeev Ranjan
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Jajati K Mohapatra
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Nihar Ranjan Sahoo
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| | - Rabindra Prasad Singh
- ICAR-National Institute on Foot-and-Mouth Disease, Arugul, Bhubaneswar, Odisha, 752050, India
| |
Collapse
|
2
|
Edwards N, Reboud J, Yan X, Guo X, Cooper JM, Wadsworth J, Waters R, Mioulet V, King DP, Shaw AE. Detection of foot-and-mouth disease virus RNA using a closed loop-mediated isothermal amplification system. Front Microbiol 2024; 15:1429288. [PMID: 39188314 PMCID: PMC11346313 DOI: 10.3389/fmicb.2024.1429288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals responsible for economic losses that amount to >$20 billion annually. Rapid recognition of FMD cases provides vital information to guide control programmes. A range of point-of-need amplification technologies have been developed which allow sensitive detection of the causative virus (FMDV) in the field at locations remote from laboratories. Here we describe a novel system to detect FMDV RNA using loop-mediated isothermal amplification (LAMP). This test was evaluated using a panel of FMDV isolates (n = 79) and RNA standards demonstrating capability to amplify viral genome directly from clinical material in the absence of nucleic acid extraction. This extraction-free RT-LAMP assay was transferred to a bespoke closed-system lateral flow test (LFT) that was used in combination with a low-cost hand-held heater. Our results show that the RT-LAMP-LFT assay retains a high level of diagnostic and analytical sensitivity when using direct clinical material, with a limit of detection under 80 copies per reaction. Together, our data support the potential for the use of this assay at the point-of-need to facilitate rapid feedback on the status of suspect cases.
Collapse
Affiliation(s)
| | - Julien Reboud
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Xiaoxiang Yan
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Xin Guo
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - Ryan Waters
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | |
Collapse
|
3
|
Costa-Ribeiro A, Lamas A, Mora A, Prado M, Garrido-Maestu A. Moving towards on-site detection of Shiga toxin-producing Escherichia coli in ready-to-eat leafy greens. Curr Res Food Sci 2024; 8:100716. [PMID: 38511154 PMCID: PMC10950744 DOI: 10.1016/j.crfs.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Rapid identification of Shiga toxin-producing Escherichia coli, or STEC, is of utmost importance to assure the innocuousness of the foodstuffs. STEC have been implicated in outbreaks associated with different types of foods however, among them, ready-to-eat (RTE) vegetables are particularly problematic as they are consumed raw, and are rich in compounds that inhibit DNA-based detection methods such as qPCR. In the present study a novel method based on Loop-mediated isothermal amplification (LAMP) to overcome the limitations associated with current molecular methods for the detection of STEC in RTE vegetables targeting stx1 and stx2 genes. In this sense, LAMP demonstrated to be more robust against inhibitory substances in food. In this study, a comprehensive enrichment protocol was combined with four inexpensive DNA extraction protocols. The one based on silica purification enhanced the performance of the method, therefore it was selected for its implementation in the final method. Additionally, three different detection chemistries were compared, namely real-time fluorescence detection, and two end-point colorimetric strategies, one based on the addition of SYBR Green, and the other based on a commercial colorimetric master mix. After optimization, all three chemistries demonstrated suitable for the detection of STEC in spiked RTE salad samples, as it was possible to reach a LOD50 of 0.9, 1.4, and 7.0 CFU/25 g for the real-time, SYBR and CC LAMP assays respectively. All the performance parameters reached values higher than 90 %, when compared to a reference method based on multiplex qPCR. More specifically, the analytical sensitivity was 100, 90.0 and 100 % for real-time, SYBR and CC LAMP respectively, the specificity 100 % for all three assays, and accuracy 100, 96 and 100 %. Finally, a high degree of concordance was also obtained (1, 0.92 and 1 respectively). Considering the current technological advances, the method reported, using any of the three detection strategies, demonstrated suitable for their implementation in decentralized settings, with low equipment resources.
Collapse
Affiliation(s)
- Ana Costa-Ribeiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
| | - Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition, and Bromatology, Veterinary School, Campus Terra, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition, and Bromatology, Veterinary School, Campus Terra, Universidade de Santiago de Compostela (USC), 27002, Lugo, Spain
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
- Laboratory of Microbiology and Technology of Marine Products (MicroTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello, 6, 36208, Vigo, Spain
| |
Collapse
|
4
|
Zou Y, Mason MG, Botella JR. A low-cost, portable, dual-function readout device for amplification-based point-of-need diagnostics. Appl Environ Microbiol 2023; 89:e0090223. [PMID: 38047632 PMCID: PMC10734478 DOI: 10.1128/aem.00902-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE The first critical step in timely disease management is rapid disease identification, which is ideally on-site detection. Of all the technologies available for disease identification, nucleic acid amplification-based diagnostics are often used due to their specificity, sensitivity, adaptability, and speed. However, the modules to interpret amplification results rapidly, reliably, and easily in resource-limited settings at point-of-need (PON) are in high demand. Therefore, we developed a portable, low-cost, and easy-to-perform device that can be used for amplification readout at PON to enable rapid yet reliable disease identification by users with minimal training.
Collapse
Affiliation(s)
- Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael Glenn Mason
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Aksono EB, Lamid M, Rimayanti R, Hamid IS, Effendi MH, Rantam FA, Widjiati W, Mufasirin M, Puspitasari H, Fitria M, Fajar NS, Suwanti LT, Nusdianto N, Zaidan AH, Kanai Y, Sucipto TH. Designing one-step reverse transcriptase loop-mediated isothermal amplification for serotype O foot-and-mouth disease virus detection during the 2022 outbreak in East Java, Indonesia. Vet World 2023; 16:1889-1896. [PMID: 37859973 PMCID: PMC10583884 DOI: 10.14202/vetworld.2023.1889-1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Various methods can detect foot-and-mouth disease (FMD) in cows, but they necessitate resources, time, costs, laboratory facilities, and specific clinical specimen submission, often leading to FMD virus (FMDV) diagnosis delays. The 2022 FMD outbreak in East Java, Indonesia, highlighted the need for an easy, inexpensive, rapid, and accurate detection approach. This study aims to devise a one-step reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) technique and phylogenetic analysis to detect the serotype O FMDV outbreak in East Java. Materials and Methods Swab samples were collected from the foot vesicles, nasal secretions, and saliva of five suspected FMDV-infected cows in East Java between June and July 2022. The RT-LAMP design used hydroxy naphthol blue dye or SYBR Green I dye, with confirmatory analysis through reverse transcriptase polymerase chain reaction (RT-PCR) targeting 249 base pairs. PCR products underwent purification, sequencing, and nucleotide alignment, followed by phylogenetic analysis. Results The RT-LAMP method using hydroxy naphthol blue dye displayed a positive reaction through a color shift from purple to blue in the tube. Naked-eye observation in standard light or ultraviolet (UV) light at 365 nm, with SYBR Green I stain, also revealed color change. Specifically, using SYBR Green I dye, UV light at 365 nm revealed a color shift from yellow to green, signifying a positive reaction. Nucleotide alignment revealed mutations and deletion at the 15th sequence in the JT-INDO-K3 isolate from the East Java FMDV outbreak. Despite differing branches, the phylogenetic tree placed it in the same cluster as serotype O FMDV from Malaysia and Mongolia. Conclusion JT-INDO-K3 exhibited distinctions from Indonesian serotype O FMDV isolates and those documented in GenBank. Then, the RT-LAMP method used in this study has a detection limit 10 times higher latter than the conventional RT-PCR limit, without any cross-reactivity among strains.
Collapse
Affiliation(s)
- Eduardus Bimo Aksono
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Institute of Life Science, Technology and Engineering, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mirni Lamid
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Rimayanti Rimayanti
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Iwan Sahrial Hamid
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Fedik Abdul Rantam
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Widjiati Widjiati
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mufasirin Mufasirin
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Heni Puspitasari
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Munawaroh Fitria
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Nur Syamsiatul Fajar
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Lucia Tri Suwanti
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Nusdianto Nusdianto
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Andi Hamim Zaidan
- Institute of Life Science, Technology and Engineering, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Yuta Kanai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Teguh Hari Sucipto
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| |
Collapse
|
6
|
Yilmaz S, Adkins S, Batuman O. Field-Portable, Rapid, and Low-Cost RT-LAMP Assay for the Detection of Tomato Chlorotic Spot Virus. PHYTOPATHOLOGY 2023; 113:567-576. [PMID: 36222536 DOI: 10.1094/phyto-08-22-0319-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tomato chlorotic spot virus (TCSV) is a highly destructive, thrips-transmitted, emerging orthotospovirus in various vegetable and ornamental crops. It is important to reduce the risk of spreading this virus by limiting the movement of infected plant materials to other geographic areas by utilizing point-of-care diagnostics. Current diagnostic assays for TCSV require costly lab equipment, skilled personnel, and electricity. Here, we report the development of a simple rechargeable battery-operated handwarmer-assisted reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay and demonstrate a step-by-step protocol to achieve in-field detection of TCSV. Under field conditions, handwarmer-assisted RT-LAMP can detect as little as 0.9 pg/μl of total RNA from TCSV-infected tomato plants in <35 min. When fully charged, the field-portable device can be used in six consecutive RT-LAMP detection assays, yielding test results for 96 individual samples. Dye-based colorimetric methods, including pH and metal ion indicators, were evaluated to eliminate laboratory-dependent LAMP visualization. Phenol red combined with hydroxynaphthol blue was adopted in the handwarmer-assisted RT-LAMP detection method to obtain a more robust color difference distinguishable by the naked eye. Overall, handwarmer-assisted RT-LAMP is a rapid, highly sensitive, and cost-effective diagnostic technique that can be used by nonspecialist personnel in the field, particularly in rural production areas lacking access to a diagnostic lab or constant electricity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida IFAS, Immokalee, FL 34142
| | - Scott Adkins
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Fort Pierce, FL 34945
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida IFAS, Immokalee, FL 34142
| |
Collapse
|