Truchado DA, Juárez-Molina M, Rincón S, Zurita L, Tomé-Amat J, Lorz C, Ponz F. A Multifunctionalized Potyvirus-Derived Nanoparticle That Targets and Internalizes into Cancer Cells.
Int J Mol Sci 2024;
25:4327. [PMID:
38673914 PMCID:
PMC11050569 DOI:
10.3390/ijms25084327]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.
Collapse