1
|
Lan W, Quan L, Li Y, Ou J, Duan B, Mei T, Tan X, Chen W, Feng L, Wan C, Zhao W, Chodosh J, Seto D, Zhang Q. Isolation of novel simian adenoviruses from macaques for development of a vector for human gene therapy and vaccines. J Virol 2023; 97:e0101423. [PMID: 37712705 PMCID: PMC10617444 DOI: 10.1128/jvi.01014-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.
Collapse
Affiliation(s)
- Wendong Lan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulu Quan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqiang Li
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Junxian Ou
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Biyan Duan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Ting Mei
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Tan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Weiwei Chen
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
García-Machorro J, Ramírez-Salinas GL, Martinez-Archundia M, Correa-Basurto J. The Advantage of Using Immunoinformatic Tools on Vaccine Design and Development for Coronavirus. Vaccines (Basel) 2022; 10:1844. [PMID: 36366353 PMCID: PMC9693616 DOI: 10.3390/vaccines10111844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 10/28/2023] Open
Abstract
After the outbreak of SARS-CoV-2 by the end of 2019, the vaccine development strategies became a worldwide priority. Furthermore, the appearances of novel SARS-CoV-2 variants challenge researchers to develop new pharmacological or preventive strategies. However, vaccines still represent an efficient way to control the SARS-CoV-2 pandemic worldwide. This review describes the importance of bioinformatic and immunoinformatic tools (in silico) for guide vaccine design. In silico strategies permit the identification of epitopes (immunogenic peptides) which could be used as potential vaccines, as well as nonacarriers such as: vector viral based vaccines, RNA-based vaccines and dendrimers through immunoinformatics. Currently, nucleic acid and protein sequential as well structural analyses through bioinformatic tools allow us to get immunogenic epitopes which can induce immune response alone or in complex with nanocarriers. One of the advantages of in silico techniques is that they facilitate the identification of epitopes, while accelerating the process and helping to economize some stages of the development of safe vaccines.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gema Lizbeth Ramírez-Salinas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico
| | - Marlet Martinez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City 11340, Mexico
| |
Collapse
|
3
|
Wu X, Zhang J, Lan W, Quan L, Ou J, Zhao W, Wu J, Woo PCY, Seto D, Zhang Q. Molecular Typing and Rapid Identification of Human Adenoviruses Associated With Respiratory Diseases Using Universal PCR and Sequencing Primers for the Three Major Capsid Genes: Penton Base, Hexon, and Fiber. Front Microbiol 2022; 13:911694. [PMID: 35633710 PMCID: PMC9133664 DOI: 10.3389/fmicb.2022.911694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenoviruses (HAdVs) within species B, C, and E are responsible for highly contagious and potentially severe respiratory disease infections. The traditional method to type these pathogens was based on virus neutralization and hemagglutination assays, which are both time-consuming and difficult, particularly due to the nonavailability of reagents. Subsequent molecular typing based on the partial characterization of the hexon gene and/or the restriction enzyme analysis (REA) of the genomes is inadequate, particularly in identifying recombinants. Here, a rapid, simple, and cost-effective method for molecular typing HAdV respiratory pathogens is presented. This incorporates three pairs of universal PCR primers that target the variable regions of the three major capsid genes, i.e., hexon, penton base, and fiber genes, that span the genome. The protocol enables typing and characterization of genotypes within species B, C, and E, as well as of some genotypes within species D and F. To validate this method, we surveyed 100 children with HAdV-associated acute respiratory infections identified by direct immunofluorescence (Hong Kong; July through October, 2014). Throat swab specimens were collected and analyzed by PCR amplification and sequencing; these sequences were characterized by BLAST. HAdVs were detected in 98 out of 100 (98%) samples, distributing as follows: 74 HAdV-B3 (74%); 10 HAdV-E4 (10%); 7 HAdV-C2 (7%); 2 HAdV-C6 (2%); 1 HAdV-B7 (1%); 1 HAdV-C1 (1%); 2 co-infection (2%); and 1 novel recombinant (1%). This study is the first detailed molecular epidemiological survey of HAdVs in Hong Kong. The developed method allows for the rapid identification of HAdV respiratory pathogens, including recombinants, and bypasses the need for whole genome sequencing for real-time surveillance of circulating adenovirus strains in outbreaks and populations by clinical virologists, public health officials, and epidemiologists.
Collapse
Affiliation(s)
- Xiaowei Wu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendong Lan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lulu Quan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, United States
- Donald Seto,
| | - Qiwei Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Qiwei Zhang,
| |
Collapse
|
4
|
Liu W, Zhang L, Cai Y, Zhang Q, Chen D, Qiu S, Wang Y, Xu D, Gu S, Li X, Dai J, Liu Q, Zhou R, Tian X. Human Adenovirus Subtype 21a Isolates From Children With Severe Lower Respiratory Illness in China. Front Microbiol 2022; 13:924172. [PMID: 35783397 PMCID: PMC9244545 DOI: 10.3389/fmicb.2022.924172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenovirus type 21 (HAdV-21) is an important pathogen associated with acute respiratory infection (ARI), but it was rarely reported and characterized so far. In this study, 151 of 1,704 (8.9%) pediatric patients (≤14 years old) hospitalized with ARI in Guangzhou, China in 2019 were positive for HAdV which was the third most frequently detected pathogen. Two HAdV-21-positive patients presented with severe lower respiratory illness and had similar initial symptoms at onset of illness. Then two HAdV-21 strains were isolated and characterized. The two HAdV-21 strains were sequenced and classified as subtype 21a with genomes closely related to strain BB/201903 found in Bengbu, China in March 2019. Phylogenetic analysis for whole genome and major antigen proteins of global HAdV-21 strains showed that HAdV-21 could be classified into two branches, branch 1 including genotype 21p, branch 2 including all other strains dividing into genotype 21a and 21b. There was no significant difference in the plaque size, or the replication curves between the two HAdV-21a strains and the prototype strain HAdV-21p AV-1645. However, there were five highly variable regions (HVR1, HVR3, HVR4, HVR5, and HVR7) in the hexon protein that varied between two branches. Mice immunized with one branch strain showed 2-4-fold lower neutralizing antibody titers against another branch strain. In summary, this study firstly reported two HAdV-21a infections of children in China, characterized two isolates of HAdV-21a associated with severe lower respiratory illness; our results could be important for understanding the HAdV-21 epidemiology and pathogenic, and for developing HAdV-21 vaccine and drug.
Collapse
Affiliation(s)
- Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Yong Cai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Qiong Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Dehui Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Shujun Gu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Jing Dai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Qian Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Qian Liu,
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Rong Zhou,
| | - Xingui Tian
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingui Tian,
| |
Collapse
|
5
|
Zhao S, Guan W, Ma K, Yan Y, Ou J, Zhang J, Yu Z, Wu J, Zhang Q. Development and Application of a Fast Method to Acquire the Accurate Whole-Genome Sequences of Human Adenoviruses. Front Microbiol 2021; 12:661382. [PMID: 34054762 PMCID: PMC8160523 DOI: 10.3389/fmicb.2021.661382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
The whole-genome sequencing (WGS) of human adenoviruses (HAdVs) plays an important role in identifying, typing, and mutation analysis of HAdVs. Nowadays, three generations of sequencing have been developed. The accuracy of first-generation sequencing is up to 99.99%, whereas this technology relies on PCR and is time consuming; the next-generation sequencing (NGS) is expensive and not cost effective for determining a few special samples; and the third-generation sequencing technology has a higher error rate. In this study, first, we developed an efficient HAdV genomic DNA extraction method. Using the complete genomic DNA instead of the PCR amplicons as the direct sequencing template and a set of walking primers, we developed the HAdV WGS method based on first-generation sequencing. The HAdV whole genomes were effectively sequenced by a set of one-way sequencing primers designed, which reduced the sequencing time and cost. More importantly, high sequence accuracy is guaranteed. Four HAdV strains (GZ01, GZ02, HK35, and HK91) were isolated from children with acute respiratory diseases (ARDs), and the complete genomes were sequenced using this method. The accurate sequences of the whole inverted terminal repeats (ITRs) at both ends of the HAdV genomes were also acquired. The genome sequence of human adenovirus type 14 (HAdV-B14) strain GZ01 acquired by this method is identical to the sequence released in GenBank, which indicates that this novel sequencing method has high accuracy. The comparative genomic analysis identified that strain GZ02 isolated in September 2010 had the identical genomic sequence with the HAdV-B14 strain GZ01 (October 2010). Therefore, strain GZ02 is the first HAdV-B14 isolate emergent in China (September 2010; GenBank acc no. MW692349). The WGS of HAdV-C2 strain HK91 and HAdV-E4 strain HK35 isolated from children with acute respiratory disease in Hong Kong were also determined by this sequencing method. In conclusion, this WGS method is fast, accurate, and universal for common human adenovirus species B, C, and E. The sequencing strategy may also be applied to the WGS of the other DNA viruses.
Collapse
Affiliation(s)
- Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kui Ma
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhiwu Yu
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Chen SY, Liu W, Xu Y, Qiu S, Chen Y, Tian X, Zhou R. Epidemiology and Genetic Variabilities of Human Adenovirus Type 55 Reveal Relative Genome Stability Across Time and Geographic Space in China. Front Microbiol 2020; 11:606195. [PMID: 33343550 PMCID: PMC7738467 DOI: 10.3389/fmicb.2020.606195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
After the first outbreak in China in 2006, human adenovirus type 55 (HAdV-B55) has become a common pathogen causing life threatening pneumonia in northern China. However, HAdV-B55 infection has been rarely reported in southern China. Here, we collected throat swabs from 3,192 hospitalized children with acute respiratory disease (ARD) from May 2017 to April 2019 in Guangzhou, southern China, tested them for HAdV-B55 infection. Only one of 1,399 patients from May 2017 to April 2018 was HAdV-B55 positive; HAdV-B55 infections significantly increased with 10 of 1,792 patients testing positive since May 2018. HAdV-B55-267, isolated from a case of death, was sequenced for whole genomic analysis. Three other strains, HAdV-B55-Y16, -TY12, and -TY26, isolated earlier in patients from Shanxi, northern China, were also sequenced and analyzed. The four HAdV-B55 strains formed similar plaques, grew to similar titers, and resulted in similar typical cell pathogenic effects. HAdV-B55-267 formed a subclade with the prototype strain QS-DLL; strains HAdV-B55-Y16, -TY12, and -TY26 were closely related to strain QZ01. HAdV-B55 could be divided into two subtypes (HAdV-B55-a and -b) according to the presence or absence of the insertion of "CCATATCCGTGTT"; all strains isolated from China except for strain BJ01 belong to subtype b. HAdV-B55-267 had only one non-synonymous substitution comparing with strain QS-DLL, and all HAdV-B55 strains had highly conserved capsid proteins and few non-synonymous substitutions. This study suggests that HAdV-B55 is an important pathogen associated with ARD in Guangzhou since 2018, exhibiting the relative genome stability across time and geographic space in China.
Collapse
Affiliation(s)
| | | | | | | | | | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Kang J, Ismail AM, Dehghan S, Rajaiya J, Allard MW, Lim HC, Dyer DW, Chodosh J, Seto D. Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics 2020; 36:358-373. [PMID: 34618969 DOI: 10.1111/cla.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.
Collapse
Affiliation(s)
- June Kang
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Shoaleh Dehghan
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Chemistry Department, American University, Washington, DC, 20016, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Marc W Allard
- Division of Microbiology (HFS-710), Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD, 20740, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University Manassas, VA, 20110, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| |
Collapse
|
8
|
Cheng Z, Yan Y, Jing S, Li WG, Chen WW, Zhang J, Li M, Zhao S, Cao N, Ou J, Zhao S, Wu X, Cao B, Zhang Q. Comparative Genomic Analysis of Re-emergent Human Adenovirus Type 55 Pathogens Associated With Adult Severe Community-Acquired Pneumonia Reveals Conserved Genomes and Capsid Proteins. Front Microbiol 2018; 9:1180. [PMID: 29922263 PMCID: PMC5996824 DOI: 10.3389/fmicb.2018.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Human adenovirus type 55 (HAdV-B55) is a recently identified acute respiratory disease (ARD) pathogen in HAdV species B with a recombinant genome between renal HAdV-B11 and respiratory HAdV-B14. Since HAdV-B55 first appeared in China school in 2006, no more ARD cases associated with it had been reported until 2011, when there was an outbreak of adult severe community-acquired pneumonia (CAP) in Beijing, China. Reported here is the bioinformatics analysis of the re-emergent HAdV-B55 responsible for this outbreak. Recombination and protein sequence analysis re-confirmed that this isolate (BJ01) was a recombinant virus with the capsid hexon gene from HAdV-B11. The selection pressures for the three capsid proteins, i.e., hexon, penton base, and fiber genes, were all negative, along with very low non-synonymous (dN) and synonymous (dS) substitutions/site (<0.0007). Phylogenetic analyses of the whole genome and the three major capsid genes of HAdV-B55 revealed the close phylogenetic relationship among all HAdV-B55 strains. Comparative genomic analysis of this re-emergent HAdV-B55 strain (BJ01; 2011) with the first HAdV-B55 strain (QS-DLL; 2006) showed the high genome identity (99.87%), including 10 single-nucleotide non-synonymous substitutions, 11 synonymous substitutions, 3 insertions, and one deletion in non-coding regions. The major non-synonymous substitutions (6 of 10) occurred in the protein pVI in its L3 region, which protein has different functions at various stages of an adenovirus infection, and may be associated with the population distribution of HAdV-B55 infection. No non-synonymous substitutions were found in the three major capsid proteins, which proteins are responsible for type-specific neutralizing antibodies. Comparative genomic analysis of the re-emergent HAdV-B55 strains associated with adult severe CAP revealed conserved genome and capsid proteins, providing the foundation for the development of effective vaccines against this pathogen. This study also facilitates the further investigation of HAdV-B55 epidemiology, molecular evolution, patterns of pathogen emergence and re-emergence, and the predication of genome recombination between adenoviruses.
Collapse
Affiliation(s)
- Zetao Cheng
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuqian Yan
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuping Jing
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Gang Li
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Jing Zhang
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min Li
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Zhao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Na Cao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Suhui Zhao
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xianbo Wu
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiwei Zhang
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Comparative genomic analysis of two emergent human adenovirus type 14 respiratory pathogen isolates in China reveals similar yet divergent genomes. Emerg Microbes Infect 2017; 6:e92. [PMID: 29089589 PMCID: PMC5717082 DOI: 10.1038/emi.2017.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 02/04/2023]
Abstract
Human adenovirus type 14 (HAdV-B14p) was originally identified as an acute respiratory disease (ARD) pathogen in The Netherlands in 1955. For approximately fifty years, few sporadic infections were observed. In 2005, HAdV-B14p1, a genomic variant, re-emerged and was associated with several large ARD outbreaks across the U.S. and, subsequently, in Canada, the U.K., Ireland, and China. This strain was associated with an unusually higher fatality rate than previously reported for both this prototype and other HAdV types in general. In China, HAdV-B14 was first observed in 2010, when two unrelated HAdV-B14-associated ARD cases were reported in Southern China (GZ01) and Northern China (BJ430), followed by three subsequent outbreaks. While comparative genomic analysis, including indel analysis, shows that the three China isolates, with whole genome data available, are similar to the de Wit prototype, all are divergent from the U.S. strain (303600; 2007). Although the genomes of strains GZ01 and BJ430 are nearly identical, as per their genome type characterization and percent identities, they are subtly divergent in their genome mutation patterns. These genomes indicate possibly two lineages of HAdV-B14 and independent introductions into China from abroad, or subsequent divergence from one; CHN2012 likely represents a separate sub-lineage. Observations of these simultaneously reported emergent strains in China add to the understanding of the circulation, epidemiology, and evolution of these HAdV pathogens, as well as provide a foundation for developing effective vaccines and public health strategies, including nationwide surveillance in anticipation of larger outbreaks with potentially higher fatality rates associated with HAdV-B14p1.
Collapse
|
10
|
Adhikary AK, Banik U. Human adenovirus type 8: the major agent of epidemic keratoconjunctivitis (EKC). J Clin Virol 2014; 61:477-86. [PMID: 25464969 DOI: 10.1016/j.jcv.2014.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 11/25/2022]
Abstract
Human adenovirus type 8 (HAdV-8) is the most common causative agent of a highly contagious eye disease known as epidemic keratoconjunctivitis (EKC). HAdV-8 strains have been classified into genome types HAdV-8A to 8K and HAdV/D1 to D12 according to restriction endonuclease analysis. This review focuses on the significance of HAdV-8 as an agent of EKC. Molecular analysis of HAdV-8 genome types HAdV-53 and HAdV-54 was performed to reveal potential genetic variation in the hexon and fiber, which might affect the antigenicity and tropism of the virus, respectively. On the basis of the published data, three patterns of HAdV-8 genome type distribution were observed worldwide: (1) genome types restricted to a microenvironment, (2) genome types distributed within a country, and (3) globally dispersed genome types. Simplot and zPicture showed that the HAdV-8 genome types were nearly identical to each other. HAdV-54 is very close to the HAdV-8P, B and E genomes, except in the hexon. In a restriction map, HAdV-8P, B, and E share a very high percentage of restriction sites with each other. Hypervariable regions (HVRs) of the hexon were conserved and were 100% identical among the genome types. The fiber knob of HAdV-8P, A, E, J and HAdV-53 were 100% identical. In phylogeny, HVRs of the hexon and fiber knob of the HAdV-8 genome types segregated into monophyletic clusters. Neutralizing antibodies against one genome type will provide protection against other genome types, and the selection of future vaccine strains would be simple due to the stable HVRs. Molecular analysis of whole genomes, particularly of the capsid proteins of the remaining genome types, would be useful to substantiate our observations.
Collapse
Affiliation(s)
- Arun Kumar Adhikary
- Unit of Microbiology, Faculty of Medicine, AIMST University, 08100 Bedong, Semeling, Kedah Darul Aman, Malaysia.
| | - Urmila Banik
- Unit of Pathology, Faculty of Medicine, AIMST University, 08100 Bedong, Semeling, Kedah Darul Aman, Malaysia
| |
Collapse
|
11
|
Genomic stability of adipogenic human adenovirus 36. Int J Obes (Lond) 2013; 38:321-4. [PMID: 23732658 DOI: 10.1038/ijo.2013.67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/11/2013] [Accepted: 04/04/2013] [Indexed: 12/24/2022]
Abstract
Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.
Collapse
|
12
|
Abstract
As one of the first five human adenoviruses (HAdVs) to be sequenced, type 17 was important as a reference tool for comparative genomics of recently isolated HAdV pathogens in species D. HAdV-D17 was the first species D adenovirus to be sequenced and was deposited in GenBank in 1999. These genome data were not of high quality, and a redetermination of the same stock virus provides corrected data; among the differences are a length of 35,139 bp versus 35,100 bp in the original, and 160 mismatches to the original genome were found. Annotation of the coding sequences reveals 39 as opposed to 8, a finding which is important for phylogenomic studies.
Collapse
|
13
|
Su X, Tian X, Zhang Q, Li H, Li X, Sheng H, Wang Y, Wu H, Zhou R. Complete genome analysis of a novel E3-partial-deleted human adenovirus type 7 strain isolated in Southern China. Virol J 2011; 8:91. [PMID: 21371333 PMCID: PMC3058094 DOI: 10.1186/1743-422x-8-91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022] Open
Abstract
Human adenovirus (HAdV) is a causative agent of acute respiratory disease, which is prevalent throughout the world. Recently there are some reports which found that the HAdV-3 and HAdV-5 genomes were very stable across 50 years of time and space. But more and more recombinant genomes have been identified in emergent HAdV pathogens and it is a pathway for the molecular evolution of types. In our paper, we found a HAdV-7 GZ07 strain isolated from a child with acute respiratory disease, whose genome was E3-partial deleted. The whole genome was 32442 bp with 2864 bp deleted in E3 region and was annotated in detail (GenBank: HQ659699). The growth character was the same as that of another HAdV-7 wild strain which had no gene deletion. By comparison with E3 regions of the other HAdV-B, we found that only left-end two proteins were remained: 12.1 kDa glycoprotein and 16.1 kDa protein. E3 MHC class I antigen-binding glycoprotein, hypothetical 20.6 kDa protein, 20.6 kDa protein, 7.7 kDa protein., 10.3 kDa protein, 14.9 kDa protein and E3 14.7 kDa protein were all missing. It is the first report about E3 deletion in human adenovirus, which suggests that E3 region is also a possible recombination region in adenovirus molecular evolution.
Collapse
Affiliation(s)
- Xiaobo Su
- Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Seto D. Viral genomics and bioinformatics. Viruses 2010; 2:2587-93. [PMID: 21994632 PMCID: PMC3185590 DOI: 10.3390/v2122587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 01/12/2023] Open
Affiliation(s)
- Donald Seto
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, VA 20110, USA; E-Mail: ; Tel.: +1-703-993-8403
| |
Collapse
|