1
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
miRNAs in Herpesvirus Infection: Powerful Regulators in Small Packages. Viruses 2023; 15:v15020429. [PMID: 36851643 PMCID: PMC9965283 DOI: 10.3390/v15020429] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
microRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways. Viruses have also adopted a variety of strategies to prevent being targeted by cellular miRNAs. Cellular miRNAs can act as anti- or proviral components, and their dysregulation occurs during a wide range of infections, including herpesvirus infection. This demonstrates the significance of miRNAs in host herpesvirus infection. The current state of knowledge regarding microRNAs and their role in the different stages of herpes virus infection are discussed in this review. It also delineates the therapeutic and biomarker potential of these microRNAs in future research directions.
Collapse
|
3
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
4
|
Muwonge H, Kasujja H, Niyonzima N, Atugonza C, Kasolo J, Lugaajju A, Nfambi J, Fred SL, Damani AM, Kimuli I, Zavuga R, Nakazzi F, Kigozi E, Nakanjako D, Kateete DP, Bwanga F. Unique circulating microRNA profiles in epidemic Kaposi's sarcoma. Noncoding RNA Res 2022; 7:114-122. [PMID: 35570854 PMCID: PMC9065625 DOI: 10.1016/j.ncrna.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Human herpesvirus 8 (HHV-8) causes Kaposi's sarcoma (KS). Kaposi sarcoma in HIV/AIDS patients is referred to as epidemic KS and is the most common HIV-related malignancy worldwide. The lack of a diagnostic assay to detect latent and early-stage disease has increased disease morbidity and mortality. Serum miRNAs have previously been used as potential biomarkers of normal physiology and disease. In the current study, we profiled unique serum miRNAs in patients with epidemic KS to generate baseline data to aid in developing a miRNA-based noninvasive biomarker assay for epidemic KS. Methods This was a comparative cross-sectional study involving 27 patients with epidemic KS and 27 HIV-positive adults with no prior diagnosis or clinical manifestation of KS. DNA and RNA were isolated from blood and serum collected from study participants. Nested PCR for circulating HHV-8 DNA was performed on the isolated DNA, whereas miRNA library preparation and sequencing for circulating miRNA were performed on the RNA samples. The miRge2 pipeline and EdgeR were used to analyse the sequencing data. Results Fifteen out of the 27 epidemic KS-positive subjects (55.6%) tested positive for HHV-8 DNA, whereas only 3 (11.1%) out of the 27 HIV-positive, KS-negative subjects tested positive for HHV-8 DNA. Additionally, we found a unique miRNA expression signature in 49 circulating miRNAs in epidemic KS subjects compared to subjects with no epidemic KS, with 41 miRNAs upregulated and 8 miRNAs downregulated. Subjects with latent KS infection had a differential upregulation of circulating miR-193a compared to HIV-positive, KS-negative subjects for whom circulating HHV-8 DNA was not detected. Further analysis of serum from epidemic KS patients revealed a miRNA signature according to KS tumor status and time since first HIV diagnosis. Conclusions This study reveals unique circulating miRNA profiles in the serum of patients with epidemic KS versus HIV-infected subjects with no KS, as well as in subjects with latent KS. Many of the dysregulated miRNAs in epidemic KS patients were previously reported to have crucial roles in KS infection and latency, highlighting their promising roles as potential biomarkers of latent or active KS infection.
Collapse
Affiliation(s)
- Haruna Muwonge
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
- Habib Medical School, Islamic University in Uganda (IUIU), Uganda
| | - Hassan Kasujja
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Nixon Niyonzima
- Uganda Cancer Institute (UCI)-Fred Hutch Collaboration, P. O Box 3935, Kampala, Uganda
| | - Carolyne Atugonza
- Medical and Molecular Laboratories, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Josephine Kasolo
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Allan Lugaajju
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Joshua Nfambi
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Sembajwe Larry Fred
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Ali Moses Damani
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Ivan Kimuli
- Department of Physiology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Robert Zavuga
- Uganda Peoples Defence forces (UPDF), P. O Box 123, Bombo, Uganda
| | - Faith Nakazzi
- Medical and Molecular Laboratories, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Edgar Kigozi
- Medical and Molecular Laboratories, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Damalie Nakanjako
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - David Patrick Kateete
- Medical and Molecular Laboratories, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| | - Freddie Bwanga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, P. O Box 7072, Kampala, Uganda
| |
Collapse
|
5
|
Tuncer SB, Celik B, Akdeniz Odemis D, Kılıc Erciyas S, Sukruoglu Erdogan O, Avsar M, Kuru Turkcan G, Yazici H. miRNA Sequence Analysis in Patients With Kaposi's Sarcoma-Associated Herpesvirus. Pathol Oncol Res 2022; 28:1610055. [PMID: 35140551 PMCID: PMC8820206 DOI: 10.3389/pore.2022.1610055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) are the non-coding RNAs that can both attach to the untranslated and coding sections of target mRNAs, triggering destruction or post-transcriptional alteration. miRNAs regulate various cellular processes such as immune function, apoptosis, and tumorigenesis. About 35,000 miRNAs have been discovered in the human genome. The increasing evidence suggests that the dysregulation of human miRNAs may have a role in the etiology of some disorders including cancer. Only a small sub-set of human miRNAs has functionally been validated in the pathogenesis of oncogenic viruses such as Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV is the cause of various human malignancies including primary effusion lymphoma (PEL) and Kaposi’s sarcoma (KS), which are mainly seen in AIDS patients or other immunocompromised people. We aimed to identify the miRNAs in Kaposi’s sarcoma cases, with the comparison of KSHV seropositive and seronegative tumors with the controls and in each other in Turkish Kaposi’s sarcoma patients. We performed the miRNA-sequencing at genome level in the peripheral blood mononuclear cells of 16 Kaposi’s sarcoma patients, and in 8 healthy controls matched for age, gender, and ethnicity. A total of 642 miRNA molecules with different expression profiles were identified between the patients and the healthy controls. Currently, out of 642 miRNAs, 7 miRNAs (miR-92b-3p, miR-490-3p, miR-615-3p, miR-629-5p, miR-1908, miR-3180, miR-4433b-3p) which have not been described in the literature in the context of Kaposi’s sarcoma were addressed in the study for the first time and 9 novel miRNAs, not found previously in the database, have been detected in Kaposi’s sarcoma using the miRNA-sequencing technique. This study demonstrates the identification of differently expressed miRNAs which might be the new therapeutic targets for Kaposi’s sarcoma, that has limited treatment options and can be used in the etiology, diagnosis, and prognosis of this cancer.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Betul Celik
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Seda Kılıc Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Mukaddes Avsar
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Istanbul, Turkey
| | - Gozde Kuru Turkcan
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic University, Istanbul, Turkey
| | - Hulya Yazici
- Department of Medical Biology and Genetics, Arel Medical Faculty, Istanbul Arel University, Istanbul, Turkey
| |
Collapse
|
6
|
Primary effusion lymphoma enhancer connectome links super-enhancers to dependency factors. Nat Commun 2020; 11:6318. [PMID: 33298918 PMCID: PMC7726151 DOI: 10.1038/s41467-020-20136-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Primary effusion lymphoma (PEL) has a very poor prognosis. To evaluate the contributions of enhancers/promoters interactions to PEL cell growth and survival, here we produce H3K27ac HiChIP datasets in PEL cells. This allows us to generate the PEL enhancer connectome, which links enhancers and promoters in PEL genome-wide. We identify more than 8000 genomic interactions in each PEL cell line. By incorporating HiChIP data with H3K27ac ChIP-seq data, we identify interactions between enhancers/enhancers, enhancers/promoters, and promoters/promoters. HiChIP further links PEL super-enhancers to PEL dependency factors MYC, IRF4, MCL1, CCND2, MDM2, and CFLAR. CRISPR knock out of MEF2C and IRF4 significantly reduces MYC and IRF4 super-enhancer H3K27ac signal. Knock out also reduces MYC and IRF4 expression. CRISPRi perturbation of these super-enhancers by tethering transcription repressors to enhancers significantly reduces target gene expression and reduces PEL cell growth. These data provide insights into PEL molecular pathogenesis.
Collapse
|
7
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
9
|
Hossain MG, Ohsaki E, Honda T, Ueda K. Importance of Promyelocytic Leukema Protein (PML) for Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. Front Microbiol 2018; 9:2324. [PMID: 30349510 PMCID: PMC6186782 DOI: 10.3389/fmicb.2018.02324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Many DNA virus replication-related proteins are associated with promyelocytic leukemia protein (PML), a component of nuclear domain 10 (ND10), which has been investigated for its potential involvement in viral replication. In the case of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic gene products, K8 (K-bZIP), ORF59, and ORF75 have been shown to colocalize with PML, but its importance in KSHV lytic replication is still unclear. In this study, we analyzed the functional influence of PML on KSHV latency and lytic replication in KSHV-infected primary effusion lymphoma (PEL) cell lines. Stable PML-knockout (BC3-PMLKO) and PML-overexpressing BC3 cells (BC3PML) were successfully generated and the latency and reactivation status were analyzed. The results demonstrated that neither KSHV latency nor the episome copy number was affected in BC3-PMLKO cells. In the reactivation phase, the expression dynamics of KSHV immediate-early or early lytic proteins such as RTA, K9 (vIRF1), K5, K3, ORF59, and K8 (K-bZIP) were comparable between wild-type, control BC3, and BC3-PMLKO cells. Interestingly, KSHV lytic replication, virion production, and expression of late genes were downregulated in BC3-PMLKO cells and upregulated in BC3PML cells, compared to those in control or wild-type BC3 cells. Moreover, exogenous PML increased the size of the PML dots and recruited additional K8 (K-bZIP) to PML-NBs as dots. Therefore, PML would function as a positive regulator for KSHV lytic DNA replication by recruiting KSHV replication factors such as 8 (K-bZIP) or ORF59 to the PML-NBs.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Dai L, Cao Y, Jiang W, Zabaleta J, Liu Z, Qiao J, Qin Z. KSHV co-infection down-regulates HPV16 E6 and E7 from cervical cancer cells. Oncotarget 2018; 8:35792-35803. [PMID: 28415759 PMCID: PMC5482618 DOI: 10.18632/oncotarget.16207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022] Open
Abstract
High-risk human papillomavirus (HPV) infection is the etiological agent of some malignancies such as cervical, oral and oropharyngeal cancers. Kaposi sarcoma-associated herpesvirus (KSHV) represents a principal causative agent of several human cancers arising in those immunocompromised patients. Interestingly, KSHV DNA has been detected in the oral cavity and the female genital tract, although its detection rate in cervical samples is very low and few reports are about KSHV/HPV co-infection. Therefore, it remains unclear about the role of KSHV co-infection in the development of HPV-related neoplasias. In the current study, we report that HPV16-integrated cervical cancer cell-line SiHa is susceptible to KSHV latent infection and replication. We also have found that KSHV infection or viral latent proteins are capable of reducing HPV16 E6/E7 expression through the manipulation of cellular microRNA function. Array analysis indicates that KSHV infection induces some inflammatory cytokines/chemokines production as well as up-regulates a series of interferon-induced genes expression, which may facilitate host immune defense system attacking these co-infected cells and clearance of viruses. Together, our data have provided possible explanations for very low detection rate of KSHV shedding as well as of KSHV/HPV co-infection in cervical samples and/or cervical cancer cells.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pediatrics, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Departments of Genetics Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Yueyu Cao
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Jiang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jovanny Zabaleta
- Pediatrics, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Zhongmin Liu
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Qiao
- Department of Pediatrics, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhiqiang Qin
- Department of Pediatrics, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Departments of Genetics Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite. PLoS One 2018; 13:e0192659. [PMID: 29425228 PMCID: PMC5806893 DOI: 10.1371/journal.pone.0192659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS). Both KSHV and HIV infections are endemic in Uganda, where KS is among the most common cancers in HIV-infected individuals. Recent studies examined the use of small RNAs as biomarkers of disease, including microRNAs (miRNAs), with viral and tumor-derived miRNAs being detected in exosomes from individuals with KSHV-associated malignancies. In the current study, the host and viral extracellular mature miRNA expression profiles were analyzed in blood of KS-negative individuals in Uganda, comparing those with or without KSHV detectable from the oropharynx. We observed increased levels of cellular oncogenic miRNAs and decreased levels of tumor-suppressor miRNAs in plasma of infected individuals exhibiting oral KSHV shedding. These changes in host oncomiRs were exacerbated in people co-infected with HIV, and partially reversed after 2 years of anti-retroviral therapy. We also detected KSHV miRNAs in plasma of KSHV infected individuals and determined that their expression levels correlated with KSHV plasma viremia. Deep sequencing revealed an expected profile of small cellular RNAs in plasma, with miRNAs constituting the major RNA biotype. In contrast, the composition of small RNAs in exosomes was highly atypical with high levels of YRNA and low levels of miRNAs. Mass spectrometry analysis of the exosomes revealed eleven different peptides derived from the malaria parasite, Plasmodium falciparum, and small RNA sequencing confirmed widespread plasmodium co-infections in the Ugandan cohorts. Proteome analysis indicated an exosomal protein profile consistent with erythrocyte and keratinocyte origins for the plasma exosomes. A strong correlation was observed between the abundance of Plasmodium proteins and cellular markers of malaria. As Plasmodium falciparum is an endemic pathogen in Uganda, our study shows that co-infection with other pathogens, such as KSHV, can severely impact the small RNA repertoire, complicating the use of exosome miRNAs as biomarkers of disease.
Collapse
|
12
|
Functional dissection of human targets for KSHV-encoded miRNAs using network analysis. Sci Rep 2017; 7:3159. [PMID: 28600495 PMCID: PMC5466626 DOI: 10.1038/s41598-017-03462-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease, etc. In this study, we firstly systematically constructed the KSHV-encoded miRNA-regulated co-expressed protein-protein interaction network (CePPIN), which display the biological knowledge regarding the mechanism of miRNA-regulated KSHV pathogenesis. Then, we investigated the topological parameters for the proteins in CePPIN, especially for those miRNA targets and we found that cellular target genes of KSHV-encoded miRNAs tend to be hubs and bottlenecks in the network. Then the GO and KEGG pathway analysis suggests that miRNA targets are involved in various cellular processes mostly related to immune regulate and cell cycle. Enrichment analysis was also performed to identify the six important functional modules which are proven to be highly related to KSHV pathogenesis. Finally, difference analysis of common targets and specific targets shows that two kinds of targets are different in terms of both topological properties and enriched functions, thus we can extrapolate that the functions of KSHV-encoded miRNAs can be also classified into two generic groups, one can act as functional mimics of some oncogenic human miRNAs which contribute to tumorigenesis and the other can contribute to maintaining viral survival.
Collapse
|
13
|
Piedade D, Azevedo-Pereira JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses 2016; 8:v8060156. [PMID: 27271654 PMCID: PMC4926176 DOI: 10.3390/v8060156] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
14
|
Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016; 8:92. [PMID: 27043613 PMCID: PMC4848587 DOI: 10.3390/v8040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.
Collapse
Affiliation(s)
- Roxanne Strahan
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
15
|
Human Mesenchymal Stem Cells of Diverse Origins Support Persistent Infection with Kaposi's Sarcoma-Associated Herpesvirus and Manifest Distinct Angiogenic, Invasive, and Transforming Phenotypes. mBio 2016; 7:e02109-15. [PMID: 26814175 PMCID: PMC4742711 DOI: 10.1128/mbio.02109-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma (KS), a highly angiogenic and invasive tumor often involving different organ sites, including the oral cavity, is caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV). Diverse cell markers have been identified on KS tumor cells, but their origin remains an enigma. We previously showed that KSHV could efficiently infect, transform, and reprogram rat primary mesenchymal stem cells (MSCs) into KS-like tumor cells. In this study, we showed that human primary MSCs derived from diverse organs, including bone marrow (MSCbm), adipose tissue (MSCa), dental pulp, gingiva tissue (GMSC), and exfoliated deciduous teeth, were permissive to KSHV infection. We successfully established long-term cultures of KSHV-infected MSCa, MSCbm, and GMSC (LTC-KMSCs). While LTC-KMSCs had lower proliferation rates than the uninfected cells, they expressed mixtures of KS markers and displayed differential angiogenic, invasive, and transforming phenotypes. Genetic analysis identified KSHV-derived microRNAs that mediated KSHV-induced angiogenic activity by activating the AKT pathway. These results indicated that human MSCs could be the KSHV target cells in vivo and established valid models for delineating the mechanism of KSHV infection, replication, and malignant transformation in biologically relevant cell types. IMPORTANCE Kaposi's sarcoma is the most common cancer in AIDS patients. While KSHV infection is required for the development of Kaposi's sarcoma, the origin of KSHV target cells remains unclear. We show that KSHV can efficiently infect human primary mesenchymal stem cells of diverse origins and reprogram them to acquire various degrees of Kaposi's sarcoma-like cell makers and angiogenic, invasive, and transforming phenotypes. These results indicate that human mesenchymal stem cells might be the KSHV target cells and establish models for delineating the mechanism of KSHV-induced malignant transformation.
Collapse
|
16
|
Avey D, Brewers B, Zhu F. Recent advances in the study of Kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin 2015; 30:130-45. [PMID: 25924994 PMCID: PMC8200917 DOI: 10.1007/s12250-015-3595-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Brittany Brewers
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| |
Collapse
|