1
|
Huang Y, Mei H, Deng C, Wang W, Yuan C, Nie Y, Li JD, Liu J. EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection. Nat Commun 2024; 15:7711. [PMID: 39231976 PMCID: PMC11374996 DOI: 10.1038/s41467-024-52193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Baculovirus is an obligate parasitic virus of the phylum Arthropoda. Baculovirus including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used in the laboratory and industrial preparation of proteins or protein complexes. Due to its large packaging capacity and non-replicative and non-integrative natures in mammals, baculovirus has been proposed as a gene therapy vector for transgene delivery. However, the mechanism of baculovirus transduction in mammalian cells has not been fully illustrated. Here, we employed a cell surface protein-focused CRISPR screen to identify host dependency factors for baculovirus transduction in mammalian cells. The screening experiment uncovered a series of baculovirus host factors in human cells, including exostosin-like glycosyltransferase 3 (EXTL3) and NPC intracellular cholesterol transporter 1 (NPC1). Further investigation illustrated that EXTL3 affected baculovirus attachment and entry by participating in heparan sulfate biosynthesis. In addition, NPC1 promoted baculovirus transduction by mediating membrane fusion and endosomal escape. Moreover, in vivo, baculovirus transduction in Npc1-/+ mice showed that disruption of Npc1 gene significantly reduced baculovirus transduction in mouse liver. In summary, our study revealed the functions of EXTL3 and NPC1 in baculovirus attachment, entry, and endosomal escape in mammalian cells, which is useful for understanding baculovirus transduction in human cells.
Collapse
Affiliation(s)
- Yuege Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Chunchen Deng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Shanghai Asiflyerbio Biotechnology, Shanghai, China.
| |
Collapse
|
2
|
Kolliopoulou A, Kontogiannatos D, Mazurek AJ, Prifti I, Christopoulou VM, Labropoulou V, Swevers L. Analysis of luciferase dsRNA production during baculovirus infection of Hi5 cells: RNA hairpins expressed by very late promoters do not trigger gene silencing. FRONTIERS IN INSECT SCIENCE 2022; 2:959077. [PMID: 38468767 PMCID: PMC10926400 DOI: 10.3389/finsc.2022.959077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 03/13/2024]
Abstract
The baculovirus expression vector system (BEVS) has become an important platform for the expression of recombinant proteins and is especially useful for the production of large protein complexes such as virus-like particles (VLPs). An important application for VLPs is their use as vehicles for targeted delivery of drugs or toxins which requires the development of methods for efficient loading with the intended cargo. Our research intends to employ the BEVS for the production of VLPs for the delivery of insecticidal dsRNA molecules to targeted insect pests (as "dsRNA-VLPs"). A convenient strategy would be the co-expression of long dsRNAs with viral capsid proteins and their simultaneous encapsulation during VLP assembly but the capacity of the BEVS for the production of long dsRNA has not been assessed so far. In this study, the efficiency of production of long RNA hairpins targeting the luciferase gene ("dsLuc") by the polyhedrin promoter during baculovirus infection was evaluated. However, RNAi reporter assays could not detect significant amounts of dsLuc in Hi5 cells infected with recombinant baculovirus, even in the presence of co-expressed dsRNA-binding protein B2-GFP or the employment of the MS2-MCP system. Nevertheless, dot blot analyses using anti-dsRNA antibody revealed that baculovirus-mediated expression of B2-GFP resulted in significant increases in dsRNA levels in infected cells that may correspond to hybridized complementary viral transcripts. Using B2-GFP as a genetically encoded sensor, dsRNA foci were detected in the nuclei that partially co-localized with DAPI staining, consistent with their localization at the virogenic stroma. Co-localization experiments with the baculovirus proteins vp39, Ac93, ODV-E25 and gp64 indicated limited overlap between B2-GFP and the ring zone compartment where assembly of nucleocapsids and virions occurs. Stability experiments showed that exogenous dsRNA is resistant to degradation in extracts of non-infected and infected Hi5 cells and it is proposed that strong unwinding activity at the virogenic stroma in the infected nuclei may neutralize the annealing of complementary RNA strands and block the production of long dsRNAs. Because the strong stability of exogenous dsRNA, transfection can be explored as an alternative method for delivery of cargo for dsRNA-VLPs during their assembly in baculovirus-infected Hi5 cells.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Aleksander Józef Mazurek
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Izabela Prifti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Vasiliki-Maria Christopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| |
Collapse
|
3
|
Miyauchi Y, Kimura A, Sawai M, Fujimoto K, Hirota Y, Tanaka Y, Takechi S, Mackenzie PI, Ishii Y. Use of a Baculovirus-Mammalian Cell Expression-System for Expression of Drug-Metabolizing Enzymes: Optimization of Infection With a Focus on Cytochrome P450 3A4. Front Pharmacol 2022; 13:832931. [PMID: 35295333 PMCID: PMC8919721 DOI: 10.3389/fphar.2022.832931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022] Open
Abstract
Heterologous expression systems are important for analyzing the effects of genetic factors including single nucleotide polymorphisms on the functions of drug-metabolizing enzymes. In this study, we focused on a baculovirus-mammalian cell (Bac-Mam) expression system as a safer and more efficient approach for this purpose. The baculovirus-insect cell expression system is widely utilized in large-scale protein expression. Baculovirus has been shown to also infect certain mammalian cells, although the virus only replicates in insect cells. With this knowledge, baculovirus is now being applied in a mammalian expression system called the Bac-Mam system wherein a gene-modified baculovirus is used whose promotor is replaced with one that can function in mammalian cells. We subcloned open-reading frames of cytochrome P450 3A4 (CYP3A4), UDP-glucuronosyltransferase (UGT) 1A1, and UGT2B7 into a transfer plasmid for the Bac-Mam system, and prepared recombinant Bac-Mam virus. The obtained virus was amplified in insect Sf9 cells and used to infect mammalian COS-1 cells. Expression of CYP3A4, UGT1A1, and UGT2B7 in COS-1 cell homogenates were confirmed by immunoblotting. Optimum infection conditions including the amount of Bac-Mam virus, culture days before collection, and concentration of sodium butyrate, an enhancer of viral-transduction were determined by monitoring CYP3A4 expression. Expressed CYP3A4 showed appropriate activity without supplying hemin/5-aminolevulinic acid or co-expressing with NADPH-cytochrome P450 reductase. Further, we compared gene transfer efficiency between the Bac-Mam system and an established method using recombinant plasmid and transfection reagent. Our results indicate that the Bac-Mam system can be applied to introduce drug-metabolizing enzyme genes into mammalian cells that are widely used in drug metabolism research. The expressed enzymes are expected to undergo appropriate post-translational modification as they are in mammalian bodies. The Bac-Mam system may thus accelerate pharmacogenetics and pharmacogenomics research.
Collapse
Affiliation(s)
- Yuu Miyauchi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akane Kimura
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Madoka Sawai
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Takechi
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Peter I Mackenzie
- Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre and Flinders University, Adelaide, SA, Australia
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
5
|
Zhang Y, Enden G, Wei W, Zhou F, Chen J, Merchuk JC. Baculovirus transit through insect cell membranes: A mechanistic approach. Chem Eng Sci 2020; 223:115727. [PMID: 32362678 PMCID: PMC7195021 DOI: 10.1016/j.ces.2020.115727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
A novel mechanistic model of the early stages of viral infection. Excellent fit to experimental evidence. The maximum number of virions that Sf9 cells can carry: 55 viruses/cell, is reported. Cells that carry virions on their surface, in their interior, or both are distinguished. Analytical mathematical solution renders satisfactory results.
Baculovirus systems are used for various purposes, but the kinetics of the infection process is not fully understood yet. We investigated the dynamics of virion movement from a medium toward the interior of insect cells and established a mechanistic model that shows an excellent fit to experimental results. It also makes possible a description of the viral dynamics on the cell surface. A novel measurement method was used to distinguish between infected cells that carry virions on their surfaces, cells that carry virions in their interior, and those carrying virions both inside and on their surface. The maximum number of virions carried by a cell: 55 viruses/cell, and the time required for viral internalization, 0.8h, are reported. This information is particularly useful for assessing the infection efficacy and the required number of virions needed to infect a given cell population. Although our model specifically concerns the infection process of Sf9 insect cells by baculovirus, it describes general features of viral infection. Some of the model features may eventually be applicable in the studies towards palliation of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Youhong Zhang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, LiuFang Campus, Guanggu 1st Road, Wuhan 430205 China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, LiuFang Campus, Guanggu 1st Road, Wuhan 430205 China
| | - Giora Enden
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Wei Wei
- Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, China
| | - Feng Zhou
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, LiuFang Campus, Guanggu 1st Road, Wuhan 430205 China
| | - Jie Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, LiuFang Campus, Guanggu 1st Road, Wuhan 430205 China
| | - Jose C Merchuk
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Abstract
Baculoviruses are arthropod-specific, enveloped viruses with circular, supercoiled double-stranded deoxyribonucleic acid genomes. While many viruses are studied to seek solutions for their adverse impact on human, veterinary, and plant health, the study of baculoviruses was stimulated initially by their potential utility to control insect pests. Later, the utility of baculovirus as gene expression vectors was evidenced leading to numerous applications. Several strategies are employed to obtain recombinant viruses that express large quantities of heterologous proteins. A major step forward was the development of bacmid technology (the construction of bacterial artificial chromosomes containing the genome of the baculovirus) which allows the manipulation of the baculovirus genome in bacteria. With this technology, foreign genes can be introduced into the bacmid by homologous and site-directed recombination or by transposition. Baculoviruses have been used to explore fundamental questions in molecular biology such as the nature of programmed cell-death. Moreover, the ability of baculoviruses to transduce mammalian cells led to the consideration of their use as gene-therapy and vaccine vectors. Strategies for genetic engineering of baculoviruses have been developed to meet the requirements of new application areas. Display of foreign proteins on the surface of virions or in nucleocapsid structures, the assembly of expressed proteins to form virus-like particles or protein complexes have been explored and validated as vaccines. The aim of this chapter is to update the areas of application of the baculoviruses in protein expression, alternative vaccine designs and gene therapy of infectious diseases and genetic disorders. Finally, we review the baculovirus-derived products on the market and in the pipeline for biomedical and veterinary use.
Collapse
|
7
|
Hu L, Li Y, Deng F, Hu Z, Wang H, Wang M. Improving Baculovirus Transduction of Mammalian Cells by Incorporation of Thogotovirus Glycoproteins. Virol Sin 2019; 34:454-466. [PMID: 31201733 DOI: 10.1007/s12250-019-00133-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Baculovirus can transduce a wide range of mammalian cells and is considered a promising gene therapy vector. However, the low transduction efficiency of baculovirus into many mammalian cells limits its practical application. Co-expressing heterologous viral glycoproteins (GPs), such as vesicular stomatitis virus G protein (VSV G), with baculovirus native envelope protein GP64 is one of the feasible strategies for improving virus transduction. Tick-borne thogotoviruses infect mammals and their GPs share sequence/structure homology and common evolutionary origins with baculovirus GP64. Herein, we tested whether thogotovirus GPs could facilitate the entry of the prototype baculovirus Autographa californica multiple multiple nucleopolyhedrovirus (AcMNPV) into mammalian cells. The gp genes of two thogotoviruses, Thogoto virus and Dhori virus, were inserted into the AcMNPV genome. Both GPs were properly expressed and incorporated into the envelope of the recombinant AcMNPVs. The transduction rates of recombinant AcMNPVs expressing the two thogotovirus GPs increased for approximately 4-12 fold compared to the wild type AcMNPV in six of the 12 tested mammalian cell lines. It seemed that thogotovirus GPs provide the recombinant AcMNPVs with different cell tropisms and showed better performance in several mammalian cells compared to VSV G incorporated AcMNPV. Further studies showed that the improved transduction was a result of augmented virus-endosome fusion and endosome escaping, rather than increased cell binding or internalization. We found the AcMNPV envelope protein GP64-mediated fusion was enhanced by the thogotovirus GPs at relatively higher pH conditions. Therefore, the thogotovirus GPs represent novel candidates to improve baculovirus-based gene delivery vectors.
Collapse
Affiliation(s)
- Liangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
8
|
Wang J, Zhu L, Chen X, Huang R, Wang S, Dong P. Human Bone Marrow Mesenchymal Stem Cells Functionalized by Hybrid Baculovirus-Adeno-Associated Viral Vectors for Targeting Hypopharyngeal Carcinoma. Stem Cells Dev 2019; 28:543-553. [PMID: 30747033 DOI: 10.1089/scd.2018.0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal carcinoma is a common malignant tumor of the head and neck with a very poor prognosis; the median survival time for curatively treated patients was 17.2 months in India. However, cell-based gene therapy holds promise to improve patient outcomes. In this study, we investigated whether human bone marrow mesenchymal stem cells (BMSCs) possess potential homing capacity for hypopharyngeal carcinoma. To monitor the efficiency of BMSC transplantation therapy through reporter gene imaging, we employed a hybrid baculovirus vector containing the Luc-P2A-eGFP fusion or sodium iodide symporter (NIS) sequence under the control of the cytomegalovirus promoter. To enhance the transfection efficiency, baculovirus vectors (Bac-CMV-Luc-P2A-eGFP-ITR and Bac-CMV-NIS-ITR) were flanked by inverted terminal repeats (ITRs), which are key elements of adeno-associated viruses. The infection efficiency of Bac-CMV-Luc-P2A-eGFP-ITR in BMSCs was as high as 92.84 ± 1.14% with no obvious toxic effects at a multiplicity of infection of 400. Moreover, Bac-CMV-NIS-ITR-infected BMSCs showed highly efficient radioactive iodide (125I) uptake; these high uptake levels were maintained for at least 2 h. Transwell migration assays further demonstrated the chemotaxis of BMSCs to hypopharyngeal carcinoma cells (FaDu cells) in vitro. BMSCs modified by firefly luciferase report gene or NIS were injected into nude mice with hypopharyngeal carcinoma, and changes in the localization of the BMSCs were successfully tracked with bioluminescent imaging and micro-single-photon emission computed tomography imaging. These data indicate the potential utility of BMSCs as a promising targeted-delivery vehicle for hypopharyngeal carcinoma gene therapy. Importantly, BMSCs may represent a promising targeting vector for general tumor radionuclide therapy.
Collapse
Affiliation(s)
- Jun Wang
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Otolaryngology and Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liying Zhu
- 3 Department of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwei Chen
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruofei Huang
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Wang
- 2 Department of Otolaryngology and Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin Dong
- 1 Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Liu Z, Wang X, Dai Y, Wei X, Ni M, Zhang L, Zhu Z. Expressing Double-Stranded RNAs of Insect Hormone-Related Genes Enhances Baculovirus Insecticidal Activity. Int J Mol Sci 2019; 20:E419. [PMID: 30669419 PMCID: PMC6359566 DOI: 10.3390/ijms20020419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Baculoviruses have already been used for insect pest control, but the slow killing speed limits their further promotion and application. Here we provide a strategy for improving baculovirus insecticidal activity using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) to express double-stranded RNAs (dsRNAs) targeting cotton bollworm (Helicoverpa armigera) juvenile hormone (JH)-related genes. Droplet-feeding bioassays show that the 50% lethal concentration (LC50) values of recombinant baculoviruses expressing the dsRNA of JH acid methyl transferase gene (HaJHAMT) and the JH acid binding protein gene (HaJHBP) were 1.24 × 10⁴ polyhedral inclusion bodies (PIB)/mL and 2.26 × 10⁴ PIB/mL, respectively. Both were much lower than the control value (8.12 × 10⁴ PIB/mL). Meanwhile, the LT50 of recombinant baculovirus expressing dsRNA of HaJHBP was only 54.2% of the control value, which means that larval death was accelerated. Furthermore, the mRNA level of target genes was reduced in recombinant baculovirus-treated cotton bollworm larvae. Transcription of several key genes involved in hormone signaling pathways-for example, ecdysone receptor gene (HaEcR)-was also altered. This study establishes a new strategy for pest management by interfering with insect hormone-related gene expression via baculoviruses, and the engineered baculoviruses have great potential application in cotton production.
Collapse
Affiliation(s)
- Zheming Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaofang Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Dai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoli Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mi Ni
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Baculovirus as an efficient vector for gene delivery into mosquitoes. Sci Rep 2018; 8:17778. [PMID: 30542209 PMCID: PMC6290771 DOI: 10.1038/s41598-018-35463-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Efficient gene delivery technologies play an essential role in the gene functional analyses that are necessary for basic and applied researches. Mosquitoes are ubiquitous insects, responsible for transmitting many deadly arboviruses causing millions of human deaths every year. The lack of efficient and flexible gene delivery strategies in mosquitoes are among the major hurdles for the study of mosquito biology and mosquito-pathogen interactions. We found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type baculovirus species, can efficiently transduce mosquito cells without viral propagation, allowing high level gene expression upon inducement by suitable promoters without obvious negative effects on cell propagation and viability. AcMNPV transduces into several mosquito cell types, efficiently than in commonly used mammalian cell lines and classical plasmid DNA transfection approaches. We demonstrated the application of this system by expressing influenza virus neuraminidase (NA) into mosquito hosts. Moreover, AcMNPV can transduce both larvae and adults of essentially all blood-sucking mosquito genera, resulting in bright fluorescence in insect bodies with little or no tissue barriers. Our experiments establish baculovirus as a convenient and powerful gene delivery vector in vitro and in vivo that will greatly benefit research into mosquito gene regulation, development and the study of mosquito-borne viruses.
Collapse
|
11
|
Espíritu-Ramírez P, Ortega-Balderas NY, Sevilla-Tapia L, Montiel-Martínez AG, Pastor-Flores AR, Palomares LA, Torres-Vega MA. Gene Therapy for Treatment of Chronic Hyperammonemia in a Rat Model of Hepatic Encephalopathy. Ann Hepatol 2018; 17:1026-1034. [PMID: 30600292 DOI: 10.5604/01.3001.0012.7203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Hepatic encephalopathy (HE), caused by hyperammonemia resulting from liver disease, is a spectrum of neuropsychiatric and motor disorders that can lead to death. Existing therapies are deficient and alternative treatments are needed. We have shown that gene therapy with a baculovirus vector containing the glutamine synthetase (Bac-GS) gene is efficient for reducing ammonia levels in an acute hyperammonemia rat model. However, the most common condition resulting from liver disease is chronic hyperammonemia. In this work, Bac-GS was evaluated in bile-duct ligated rats, a chronic liver disease model with hyperammonemia and some characteristics of Type C HE. MATERIAL AND METHODS Bac-GS was tested for mediating GS overexpression in HeLa cells and H9C2 myotubes. For determining the utility of Bac-GS for the reduction of ammonia levels in a chronic hyperammonemia animal model, four groups of rats were treated: control, sham, ligated with Bac-GS and ligated with Bac-GFP. Baculoviruses were injected i.m. 18 days post-surgery. Blood was drawn 2, 3 and 4 weeks post-surgery and plasma ammonia concentrations were quantified. RESULTS In protein lysates of cells and myotubes transduced with Bac-GS, a 44 kDa band corresponding to GS was detected. Significant results were obtained in the hyperammonemic bile-duct ligated rat model, as plasma ammonia was reduced to normal levels 3 days after treatment with Bac-GS. Furthermore, a transitory effect of Bac-GS was observed. CONCLUSION Our results show that gene therapy by delivering GS is a promising alternative for treatment of hyperammonemia in acute-on-chronic liver failure patients with HE.
Collapse
Affiliation(s)
- Plácido Espíritu-Ramírez
- Departamento de Gastroenterología. Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Nancy Y Ortega-Balderas
- Departamento de Gastroenterología. Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Laura Sevilla-Tapia
- Departamento de Gastroenterología. Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ana G Montiel-Martínez
- Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología. Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana R Pastor-Flores
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel A Torres-Vega
- Departamento de Gastroenterología. Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| |
Collapse
|
12
|
Ohkawa T, Welch MD. Baculovirus Actin-Based Motility Drives Nuclear Envelope Disruption and Nuclear Egress. Curr Biol 2018; 28:2153-2159.e4. [PMID: 30008331 DOI: 10.1016/j.cub.2018.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/30/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Viruses that replicate in the host cell nucleus face challenges in usurping cellular pathways to enable passage through the nuclear envelope [1]. Baculoviruses are enveloped, double-stranded DNA viruses that infect lepidopteran insects and are tools for protein expression, cell transduction, and pest management [2-4]. The type species Autographa californica M nucleopolyhedrovirus (AcMNPV) shares with other pathogens an ability to assemble host actin monomers (G-actin) into actin filaments (F-actin) to drive motility [5]. During early infection, actin-based motility in the cytoplasm speeds AcMNPV transit to the nucleus and passage through nuclear pores, enabling nuclear ingress [6, 7]. During late infection, AcMNPV assembles F-actin within the nucleus [8], which is essential for virus production [9, 10]. However, the function of nuclear F-actin is poorly understood [11], and its mechanistic role in AcMNPV infection was unknown. We show that AcMNPV mobilizes actin within the nucleus to promote egress. AcMNPV nucleocapsids exhibit intranuclear actin-based motility, mediated by the viral protein P78/83 and the host Arp2/3 complex. Viral motility drives transit to the nuclear periphery and is required for viruses to enter protrusions of the nuclear envelope. Moreover, actin polymerization is necessary for viral disruption of nuclear envelope integrity during egress. In the cytoplasm, viruses use actin-based motility to reach the plasma membrane to enable budding. Our results demonstrate that pathogens can harness actin polymerization to disrupt the nuclear envelope. Employing actin for nuclear envelope disruption may reflect viral appropriation of normal functions of nuclear actin in nuclear envelope integrity, stability, and remodeling.
Collapse
Affiliation(s)
- Taro Ohkawa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
The Functional Oligomeric State of Tegument Protein GP41 Is Essential for Baculovirus Budded Virion and Occlusion-Derived Virion Assembly. J Virol 2018; 92:JVI.02083-17. [PMID: 29643237 DOI: 10.1128/jvi.02083-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/31/2018] [Indexed: 12/18/2022] Open
Abstract
gp41, one of the baculovirus core genes, encodes the only recognized tegument (O-glycosylated) protein of the occlusion-derived virion (ODV) phenotype so far. A previous study using a temperature-sensitive Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) mutant showed that GP41 plays a crucial role in budded virion (BV) formation. However, the precise function of GP41 in the baculovirus replication cycle remains unclear. In this study, AcMNPV GP41 was found to accumulate around the ring zone (RZ) region within the infected nucleus and finally assembled into both BVs and ODVs. Deletion of gp41 from the AcMNPV genome showed that BVs were no longer formed and ODVs were no longer assembled, suggesting the essential role of this gene in baculovirus virion morphogenesis. In infected cells, besides the 42-kDa monomers, dimers and trimers were detected under nonreducing conditions, whereas only trimeric GP41 forms were selectively incorporated into BVs or ODVs. Mutations of all five cysteines in GP41 individually had minor effects on GP41 oligomer formation, albeit certain mutations impaired infectious BV production, suggesting flexibility in the intermolecular disulfide bonding. Single mutations of key leucines within two predicted leucine zipper-like motifs did not interfere with GP41 oligomerization or BV and ODV formation, but double leucine mutations completely blocked oligomerization of GP41 and progeny BV production. In the latter case, the usual subcellular localization, especially RZ accumulation, of GP41 was abolished. The above findings clearly point out a close correlation between GP41 oligomerization and function and therefore highlight the oligomeric state as the functional form of GP41 in the baculovirus replication cycle.IMPORTANCE The tegument, which is sandwiched between the nucleocapsid and the virion envelope, is an important substructure of many enveloped viruses. It is composed of one or more proteins that have important functions during virus entry, replication, assembly, and egress. Unlike another large DNA virus (herpesvirus) that encodes an extensive set of tegument components, baculoviruses very likely exploit the major tegument protein, GP41, to execute functions in baculovirus virion morphogenesis and assembly. However, the function of this O-glycosylated baculovirus tegument protein remains largely unknown. In this study, we identified trimers as the functional structure of GP41 in baculovirus virion morphogenesis and showed that both disulfide bridging and protein-protein interactions via the two leucine zipper-like domains are involved in the formation of different oligomeric states. This study advances our understanding of the unique viral tegument protein GP41 participating in the life cycle of baculoviruses.
Collapse
|
14
|
Mansouri M, Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid 2018; 98:1-7. [PMID: 29842913 DOI: 10.1016/j.plasmid.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Baculovirus is an insect virus which has been used for more than thirty years for production of recombinant proteins in insect cells. However, baculovirus can also be harnessed for efficient gene delivery to mammalian cells if it is equipped with mammalian promoters. This technology is known as BacMam and has been used for gene delivery to immortalized cell lines, stem cells, and primary cells, as well as for gene delivery in animals. Baculovirus has unique features when compared to mammalian viruses. Besides the fact that it is replication-incompetent and does not integrate into the host genome, it has large capacity for foreign DNA. This capacity can for example be used to deliver multiple genes for reprogramming of stem cells, or for delivery of large homology constructs for genome editing. In this review, we provide a brief overview of baculovirus-based gene delivery and its recent applications in therapy and basic research. We also describe how baculovirus is manipulated for efficient transduction in mammalian cells and we highlight possible future improvements.
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland; ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Applied Molecular Biology, CH-5232 Villigen, Switzerland.
| |
Collapse
|
15
|
|
16
|
Dautzenberg IJC, van den Hengel SK, de Vrij J, Ravesloot L, Cramer SJ, Hong SS, van den Wollenberg DJM, Boulanger P, Hoeben RC. Baculovirus-assisted Reovirus Infection in Monolayer and Spheroid Cultures of Glioma cells. Sci Rep 2017; 7:17654. [PMID: 29247249 PMCID: PMC5732240 DOI: 10.1038/s41598-017-17709-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
The mammalian orthoreovirus Type 3 Dearing has great potential as oncolytic agent in cancer therapy. One of the bottlenecks that hampers its antitumour efficacy in vivo is the limited tumour-cell infection and intratumoural distribution. This necessitates strategies to improve tumour penetration. In this study we employ the baculovirus Autographa californica multiple nucleopolyhedrovirus as a tool to expand the reovirus' tropism and to improve its spread in three-dimensional tumour-cell spheroids. We generated a recombinant baculovirus expressing the cellular receptor for reovirus, the Junction Adhesion Molecule-A, on its envelope. Combining these Junction Adhesion Molecule-A-expressing baculoviruses with reovirus particles leads to the formation of biviral complexes. Exposure of the reovirus-resistant glioblastoma cell line U-118 MG to the baculovirus-reovirus complexes results in efficient reovirus infection, high reovirus yields, and significant reovirus-induced cytopathic effects. As compared to the reovirus-only incubations, the biviral complexes demonstrated improved penetration and increased cell killing of three-dimensional U-118 MG tumour spheroids. Our data demonstrate that reovirus can be delivered with increased efficiency into two- and three-dimensional tumour-cell cultures via coupling the reovirus particles to baculovirus. The identification of baculovirus' capacity to penetrate into tumour tissue opens novel opportunities to improve cancer therapy by improved delivery of oncolytic viruses into tumours.
Collapse
Affiliation(s)
- Iris J C Dautzenberg
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne K van den Hengel
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen de Vrij
- Department of Neurosurgery, Brain Tumour Center, Erasmus MC, 3015 CE, Rotterdam, The Netherlands
| | - Lars Ravesloot
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steve J Cramer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saw-See Hong
- UMR754-INRA-EPHE, Unit of Viral Infections and Comparative Pathology, University of Lyon, Lyon, 69007, France
| | | | - Pierre Boulanger
- UMR754-INRA-EPHE, Unit of Viral Infections and Comparative Pathology, University of Lyon, Lyon, 69007, France
| | - Rob C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
17
|
Balasundaram G, Kwang TW, Wang S. cDNA microarray assays to evaluate immune responses following intracranial injection of baculoviral vectors in non-human primates. J Neurochem 2016; 140:320-333. [DOI: 10.1111/jnc.13884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Ghayathri Balasundaram
- Institute of Bioengineering and Nanotechnology; Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| | | | - Shu Wang
- Institute of Bioengineering and Nanotechnology; Singapore
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|
18
|
Levin E, Diekmann H, Fischer D. Highly efficient transduction of primary adult CNS and PNS neurons. Sci Rep 2016; 6:38928. [PMID: 27958330 PMCID: PMC5153636 DOI: 10.1038/srep38928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Delivery and expression of recombinant genes, a key methodology for many applications in biological research, remains a challenge especially for mature neurons. Here, we report easy, highly efficient and well tolerated transduction of adult peripheral and central neuronal populations of diverse species in culture using VSV-G pseudo-typed, recombinant baculovirus (BacMam). Transduction rates of up to 80% were reliably achieved at high multiplicity of infection without apparent neuro-cytopathic effects. Neurons could be transduced either shortly after plating or after several days in culture. Co-incubation with two different baculoviruses attained near complete co-localization of fluorescent protein expression, indicating multigene delivery. Finally, evidence for functional protein expression is provided by means of cre-mediated genetic recombination and neurite outgrowth assays. Recombinant protein was already detected within hours after transduction, thereby enabling functional readouts even in relatively short-lived neuronal cultures. Altogether, these results substantiate the usefulness of baculovirus-mediated transduction of mature neurons for future research in neuroscience.
Collapse
Affiliation(s)
- Evgeny Levin
- Division of Experimental Neurology, Medical Faculty, Heinrich-Heine-University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Heike Diekmann
- Division of Experimental Neurology, Medical Faculty, Heinrich-Heine-University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Medical Faculty, Heinrich-Heine-University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Nasimuzzaman M, Lynn D, van der Loo JC, Malik P. Purification of baculovirus vectors using heparin affinity chromatography. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16071. [PMID: 27933303 PMCID: PMC5142510 DOI: 10.1038/mtm.2016.71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Baculoviruses are commonly used for recombinant protein and vaccine production. Baculoviruses are nonpathogenic to vertebrates, have a large packaging capacity, display broad host and cell type tropism, infect both dividing and nondividing cells, and do not elicit strong immune or allergic responses in vivo. Hence, their use as gene delivery vehicles has become increasingly popular in recent years. Moreover, baculovirus vectors carrying mammalian regulatory elements can efficiently transduce and express transgenes in mammalian cells. Based on the finding that heparan sulfate, which is structurally similar to heparin, is an attachment receptor for baculovirus, we developed a novel scalable baculovirus purification method using heparin-affinity chromatography. Baculovirus supernatants were loaded onto a POROS heparin column, washed to remove unbound materials, and eluted with 1.5 mol/l NaCl, which yielded a recovery of purified baculovirus of 85%. After ultracentrifugation, baculovirus titers increased from 200- to 700-fold with overall yields of 26–29%. We further show that baculovirus particles were infectious, normal in morphology and size, despite high-salt elution and shear forces used during purification and concentration. Our chromatography-based purification method is scalable and, together with ultracentrifugation and/or tangential flow filtration, will be suitable for large-scale manufacturing of baculovirus stocks for protein and vaccine production and in gene therapy applications.
Collapse
Affiliation(s)
- Md Nasimuzzaman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Lynn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio, USA
| | - Johannes Cm van der Loo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Whitlow J, Pacelli S, Paul A. Polymeric Nanohybrids as a New Class of Therapeutic Biotransporters. MACROMOL CHEM PHYS 2016; 217:1245-1259. [PMID: 29151704 PMCID: PMC5693378 DOI: 10.1002/macp.201500464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A possible solution to enhance existing drug and gene therapies is to develop hybrid nanocarriers capable of delivering therapeutic agents in a controlled and targeted manner. This goal can be achieved by designing nanohybrid systems, which combine organic or inorganic nanomaterials with biomacromolecules into a single composite. The unique combination of properties along with their facile fabrication enables the design of smart carriers for both drug and gene delivery. These hybrids can be further modified with cell targeting motifs to enhance their biological interactivity. In this Talents and Trends article, an overview of emerging nanohybrid-based technologies will be provided to highlight their potential use as innovative platforms for improved cancer therapies and new strategies in regenerative medicine. The clinical relevance of these systems will be reviewed to define the current challenges which still need to be addressed to allow these therapies to move from bench to bedside.
Collapse
Affiliation(s)
- Jonathan Whitlow
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
21
|
Kwang TW, Zeng X, Wang S. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Mol Ther Methods Clin Dev 2016; 3:15050. [PMID: 26858963 PMCID: PMC4729316 DOI: 10.1038/mtm.2015.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022]
Abstract
Over the past two decades, baculoviruses have become workhorse research tools for transient transgene expression. Although they have not yet been used directly as a gene therapy vector in the clinical setting, numerous preclinical studies have suggested the highly promising potential of baculovirus as a delivery vector for a variety of therapeutic applications including vaccination, tissue engineering, and cancer treatment. As such, there is growing interest in using baculoviruses as human gene therapy vectors, which has led to advances in baculovirus bioprocessing methods. This review provides an overview of the current approaches for scaled-up amplification, concentration, purification, and formulation of AcMNPV baculoviruses, and highlights the key regulatory requirements that must be met before gene therapy clinical trials can be initiated.
Collapse
Affiliation(s)
| | | | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Singapore
| |
Collapse
|