1
|
Dall'Ara M, Guo Y, Poli D, Gilmer D, Ratti C. Analysis of the relative frequencies of the multipartite BNYVV genomic RNAs in different plants and tissues. J Gen Virol 2024; 105. [PMID: 38197877 DOI: 10.1099/jgv.0.001950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Multipartite virus genomes are composed of two or more segments, each packaged into an independent viral particle. A potential advantage of multipartitism is the regulation of gene expression through changes in the segment copy number. Soil-borne beet necrotic yellow vein virus (BNYVV) is a typical example of multipartism, given its high number of genomic positive-sense RNAs (up to five). Here we analyse the relative frequencies of the four genomic RNAs of BNYVV type B during infection of different host plants (Chenopodium quinoa, Beta macrocarpa and Spinacia oleracea) and organs (leaves and roots). By successfully validating a two-step reverse-transcriptase digital droplet PCR protocol, we show that RNA1 and -2 genomic segments always replicate at low and comparable relative frequencies. In contrast, RNA3 and -4 accumulate with variable relative frequencies, resulting in distinct RNA1 : RNA2 : RNA3 : RNA4 ratios, depending on the infected host species and organ.
Collapse
Affiliation(s)
- M Dall'Ara
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Y Guo
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Poli
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - D Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, France
| | - C Ratti
- DISTAL-Plant pathology, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| |
Collapse
|
2
|
Miotti N, Passera A, Ratti C, Dall'Ara M, Casati P. A Guide to Cannabis Virology: From the Virome Investigation to the Development of Viral Biotechnological Tools. Viruses 2023; 15:1532. [PMID: 37515219 PMCID: PMC10384868 DOI: 10.3390/v15071532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis sativa cultivation is experiencing a period of renewed interest due to the new opportunities for its use in different sectors including food, techno-industrial, construction, pharmaceutical and medical, cosmetics, and textiles. Moreover, its properties as a carbon sequestrator and soil improver make it suitable for sustainable agriculture and climate change mitigation strategies. The increase in cannabis cultivation is generating conditions for the spread of new pathogens. While cannabis fungal and bacterial diseases are better known and characterized, viral infections have historically been less investigated. Many viral infection reports on cannabis have recently been released, highlighting the increasing threat and spread of known and unknown viruses. However, the available information on these pathogens is still incomplete and fragmentary, and it is therefore useful to organize it into a single structured document to provide guidance to growers, breeders, and academic researchers. This review aims to present the historical excursus of cannabis virology, from the pioneering descriptions of virus-like symptoms in the 1940s/50s to the most recent high-throughput sequencing reports. Each of these viruses detected in cannabis will be categorized with an increasing degree of threat according to its potential risk to the crop. Lastly, the development of viral vectors for functional genetics studies will be described, revealing how cannabis virology is evolving not only for the characterization of its virome but also for the development of biotechnological tools for the genetic improvement of this crop.
Collapse
Affiliation(s)
- Niccolò Miotti
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Alessandro Passera
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Paola Casati
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
3
|
An Evolved 5' Untranslated Region of Alfalfa Mosaic Virus Allows the RNA Transport of Movement-Defective Variants. J Virol 2022; 96:e0098822. [PMID: 36314818 PMCID: PMC9683001 DOI: 10.1128/jvi.00988-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although the coat protein (CP) has a relevant role in the long-distance movement of alfalfa mosaic virus (AMV) and brome mosaic virus (BMV), its precise function is not fully understood. Previous results showed that a specific interaction between the C termini of the movement protein (MP) and the cognate CP is required for systemic transport. Thus, we have performed a compensatory evolution experiment using an AMV RNA3 derivative defective in long-distance transport that carries a BMV MP lacking the C-terminal 48 residues and unable to interact with the AMV CP. After several passages, five independent evolution lineages were able to move long distance. The analysis of the viral RNA of these lineages showed the presence of three different modifications located exclusively at the 5' untranslated region (5' UTR). The three evolved 5' UTR variants accumulated comparable levels of viral RNA and CP but reduced the accumulation of virus particles and the affinity between the 5' UTR and the AMV CP. In addition, the evolved 5' UTR increased cell-to-cell transport for both the AMV RNA3 carrying the BMV MP and that carrying the AMV MP. Finally, the evolved 5' UTRs allowed the systemic transport of an AMV RNA3 carrying a CP mutant defective in virus particles and increased the systemic transport of several AMV RNA3 derivatives carrying different viral MPs associated with the 30K superfamily. Altogether, our findings indicate that virus particles are not required for the systemic transport of AMV but also that BMV MP is competent for the short- and long-distance transport without the interaction with the CP. IMPORTANCE The results obtained in the present work could challenge the view of the role of the virus particle in the systemic transport of plant viruses. In this sense, we show that two different MPs are competent to systemically transport the AMV genome without the requirement of the virus particles, as reported for viruses lacking a CP (e.g., Umbravirus). The incapability of the viral MP to interact with the CP triggered virus variants that evolved to reduce the formation of virus particles, probably to increase the accessibility of the MP to the viral progeny. Our results point to the idea that virus particles would not be necessary for the viral systemic transport but would be necessary for vector virus transmission. This idea is reinforced by the observation that heterologous MPs also increased the systemic transport of the AMV constructs that have reduced encapsidation capabilities.
Collapse
|
4
|
Abstract
Multipartite virus genomes are composed of several segments, each packaged in a distinct viral particle. Although this puzzling genome architecture is found in ∼17% of known viral species, its distribution among hosts or among distinct types of genome-composing nucleic acid remains poorly understood. No convincing advantage of multipartitism has been identified, yet the maintenance of genomic integrity appears problematic. Here we review recent studies shedding light on these issues. Multipartite viruses rapidly modify the copy number of each segment/gene from one host species to another, a putative benefit if host switches are common. One multipartite virus functions in a multicellular way: The segments do not all need to be present in the same cell and can functionally complement across cells, maintaining genome integrity within hosts. The genomic integrity maintenance during host-to-host transmission needs further elucidation. These features challenge several virology foundations and could apply to other multicomponent viral systems.
Collapse
Affiliation(s)
- Yannis Michalakis
- Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Montpellier, 34394 Montpellier, France;
| | - Stéphane Blanc
- Unité Mixte de Recherche-Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, Université Montpellier, 34398 Montpellier, France;
| |
Collapse
|
5
|
Liu H, Zhao X, Yu M, Meng L, Zhou T, Shan Y, Liu X, Xia Z, An M, Wu Y. Transcriptomic and Functional Analyses Indicate Novel Anti-viral Mode of Actions on Tobacco Mosaic Virus of a Microbial Natural Product ε-Poly-l-lysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2076-2086. [PMID: 33586965 DOI: 10.1021/acs.jafc.0c07357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel anti-viral natural product ε-poly-l-lysine (ε-PL) produced by Streptomyces is a homopolymer of l-lysine, of which the underlying molecular mode of action remains to be further elucidated. In this study, ε-PL induced significant fragmentation of tobacco mosaic virus (TMV) virions and delayed the systemic infection of TMV-GFP as well as wild-type TMV in plants. ε-PL treatment also markedly inhibited RNA accumulation of TMV in tobacco BY-2 protoplasts. The results of RNA-seq indicated that the agent induced significantly differential expression of genes that are associated with defense response, stress response, autophagy, and ubiquitination. Among them, 15 critical differential expressed genes were selected for real-time quantitative PCR validation. We further demonstrated that ε-PL can induce host defense responses by assessing the activity of several defense-related enzymes in plants. Our results provided valuable insights into molecular anti-viral mode of action for ε-PL, which is expected to be applied as a novel microbial natural product against plant virus diseases.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Lingxue Meng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuhang Shan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiaoying Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
6
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity. Viruses 2019; 11:v11070673. [PMID: 31340474 PMCID: PMC6669615 DOI: 10.3390/v11070673] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.
Collapse
|
8
|
Valdano E, Manrubia S, Gómez S, Arenas A. Endemicity and prevalence of multipartite viruses under heterogeneous between-host transmission. PLoS Comput Biol 2019; 15:e1006876. [PMID: 30883545 PMCID: PMC6438571 DOI: 10.1371/journal.pcbi.1006876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 02/17/2019] [Indexed: 01/29/2023] Open
Abstract
Multipartite viruses replicate through a puzzling evolutionary strategy. Their genome is segmented into two or more parts, and encapsidated in separate particles that appear to propagate independently. Completing the replication cycle, however, requires the full genome, so that a systemic infection of a host requires the concurrent presence of several particles. This represents an apparent evolutionary drawback of multipartitism, while its advantages remain unclear. A transition from monopartite to multipartite viral forms has been described in vitro under conditions of high multiplicity of infection, suggesting that cooperation between defective mutants is a plausible evolutionary pathway towards multipartitism. However, it is unknown how the putative advantages that multipartitism might enjoy at the microscopic level affect its epidemiology, or if an explicit advantange is needed to explain its ecological persistence. In order to disentangle which mechanisms might contribute to the rise and fixation of multipartitism, we here investigate the interaction between viral spreading dynamics and host population structure. We set up a compartmental model of the spread of a virus in its different forms and explore its epidemiology using both analytical and numerical techniques. We uncover that the impact of host contact structure on spreading dynamics entails a rich phenomenology of ecological relationships that includes cooperation, competition, and commensality. Furthermore, we find out that multipartitism might rise to fixation even in the absence of explicit microscopic advantages. Multipartitism allows the virus to colonize environments that could not be invaded by the monopartite form, while homogeneous contacts between hosts facilitate its spread. We conjecture that these features might have led to an increase in the diversity and prevalence of multipartite viral forms concomitantly with the expansion of agricultural practices.
Collapse
Affiliation(s)
- Eugenio Valdano
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Susanna Manrubia
- National Centre for Biotechnology (CSIC), Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Sergio Gómez
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Alex Arenas
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
9
|
Gilmer D, Ratti C, Michel F. Long-distance movement of helical multipartite phytoviruses: keep connected or die? Curr Opin Virol 2018; 33:120-128. [PMID: 30199788 DOI: 10.1016/j.coviro.2018.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 12/28/2022]
Abstract
All living organisms have to preserve genome integrity to ensure the survival of progeny generations. Viruses, though often regarded as 'non living', protect their nucleic acids from biotic and abiotic stresses, ranging from nuclease action to radiation-induced adducts. When the viral genome is split into multiple segments, preservation of at least one copy of each segment is required. While segmented and monopartite viruses use an all-in-one strategy, multipartite viruses have to address in the cell at least one of each viral particle in which the split positive stranded RNA genome is individually packaged. Here, we review and discuss the biology of multipartite helical RNA phytoviruses to outline our current hypothesis on a coordinated genomic RNA network RNP complex that preserves an all-in-one strategy and genome integrity.
Collapse
Affiliation(s)
- David Gilmer
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | - Claudio Ratti
- Università di Bologna, Dipartimento di Scienze e Tecnologie Agroambientali, Viale G. Fanin 40, 40127 Bologna, Italy
| | - Fabrice Michel
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France.
| |
Collapse
|
10
|
Lucía-Sanz A, Aguirre J, Manrubia S. Theoretical approaches to disclosing the emergence and adaptive advantages of multipartite viruses. Curr Opin Virol 2018; 33:89-95. [PMID: 30121469 DOI: 10.1016/j.coviro.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
Multipartite viruses have a segmented genome encapsidated in different viral particles that, in principle, propagate independently. Current empirical knowledge on the molecular, ecological and evolutionary features underlying the very existence of multipartitism is fragmented and puzzling. Although it is generally assumed that multipartitism is viable only when propagation occurs at high multiplicity of infection, evidence indicates that severe population bottlenecks are common. Mathematical models aimed at describing the dynamics of multipartite viruses typically assign an advantage to the multipartite form to compensate for the cost of high multiplicity of infection. Since progress in the theoretical understanding of the evolutionary ecology of multipartitism is strongly conditioned by empirical advances, both aspects are jointly revised in this contribution.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Jacobo Aguirre
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Susanna Manrubia
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| |
Collapse
|
11
|
Sanjuán R. Collective properties of viral infectivity. Curr Opin Virol 2018; 33:1-6. [PMID: 30015082 DOI: 10.1016/j.coviro.2018.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
Individual virions typically fail to infect cells. Such decoupling between virions and infectious units is most evident in multicomponent and other segmented viruses, but is also frequent in non-segmented viruses. Despite being a well-known observation, the causes and implications of low single-virion infectivity often remain unclear. In principle, this can originate from intrinsic genetic and/or structural virion defects, but also from host infection barriers that limit early viral proliferation. Hence, viruses may have evolved strategies to increase the per-virion likelihood of establishing successful infections. This can be achieved by adopting spread modes that elevate the multiplicity of infection at the cellular level, including direct cell-to-cell viral transfer, encapsulation of multiple virions in microvesicles or other intercellular vehicles, virion aggregation, and virion binding to microbiota. In turn, increasing the multiplicity of infection could favor the evolution of defective viruses, hence modifying the fitness value of these spread modes.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València 46980, Spain.
| |
Collapse
|
12
|
Folimonova SY, Tilsner J. Hitchhikers, highway tolls and roadworks: the interactions of plant viruses with the phloem. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:82-88. [PMID: 29476981 DOI: 10.1016/j.pbi.2018.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/24/2023]
Abstract
The phloem is of central importance to plant viruses, providing the route by which they spread throughout their host. Compared with virus movement in non-vascular tissue, phloem entry, exit, and long-distance translocation usually involve additional viral factors and complex virus-host interactions, probably, because the phloem has evolved additional protection against these molecular 'hitchhikers'. Recent progress in understanding phloem trafficking of endogenous mRNAs along with observations of membranous viral replication 'factories' in sieve elements challenge existing conceptions of virus long-distance transport. At the same time, the central role of the phloem in plant defences against viruses and the sophisticated viral manipulation of this host tissue are beginning to emerge.
Collapse
Affiliation(s)
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| |
Collapse
|
13
|
Lucía-Sanz A, Manrubia S. Multipartite viruses: adaptive trick or evolutionary treat? NPJ Syst Biol Appl 2017; 3:34. [PMID: 29263796 PMCID: PMC5680193 DOI: 10.1038/s41540-017-0035-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Multipartitism counts amongst the weirdest lifestyles found in the virosphere. Multipartite viruses have genomes segmented in pieces enclosed in different capsids that are independently transmitted. Since all segments have to meet in the host for complementation and completion of the viral cycle, multipartite viruses are bound to fight the loss of genomic information. While this is an obvious disadvantage of this strategy, no consensus on its actual advantages has been reached. In this review we present an exhaustive summary of all multipartite viruses described to date. Based on evidence, we discuss possible mechanistic and evolutionary origins of different groups, as well as their mutual relationships. We argue that the ubiquitous interactions of viruses with other unrelated viruses and with subviral elements might be regarded as a plausible first step towards multipartitism. In agreement with the view of the Virosphere as a deeply entangled network of gene sharing, we contend that the power of multipartitism relies on its dynamical and opportunistic nature, because it enables immediate adaptive responses to environmental changes. As such, perhaps the reasons for its success should be shought in multipartitism itself as an adaptive mechanism, to which its evolutionarily short-lived products (that is, the extant ensemble of multipartite viral species) are subordinated. We close by discussing how our understanding of multipartitism would improve by using concepts and tools from systems biology. The faithful transmission of the genome of an organism is a fundamental step to preserve information essential for survivability. However, multipartite viruses thrive with segmented genomes that propagate in independent viral particles. Though this adaptive strategy appears as counterintuitive and suboptimal, multipartitism is common in the viral world and has very likely arisen several times. Here we review the distribution and abundance of multipartite viruses and discuss possible evolutionary pathways for their emergence. Though no clear advantage of multipartitism has been identified, we suggest that the high prevalence of this strategy relies on its dynamic and opportunistic nature, and that it can only be understood in an ecological context. A systems biology perspective could help understanding some of the open questions regarding this weird lifestyle, while multipartitism could in turn inspire design principles based on the simultaneous exploration of an exploding number of transient collaborative associations.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
14
|
Collective Infectious Units in Viruses. Trends Microbiol 2017; 25:402-412. [PMID: 28262512 DOI: 10.1016/j.tim.2017.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/15/2023]
Abstract
Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These may include various forms of cooperation such as immunity evasion, genetic complementation, division of labor, and relaxation of fitness trade-offs, but also noncooperative interactions such as negative dominance and interference, potentially leading to conflict.
Collapse
|
15
|
Abstract
Multipartite viruses have one of the most puzzling genetic organizations found in living organisms. These viruses have several genome segments, each containing only a part of the genetic information, and each individually encapsidated into a separate virus particle. While countless studies on molecular and cellular mechanisms of the infection cycle of multipartite viruses are available, just as for other virus types, very seldom is their lifestyle questioned at the viral system level. Moreover, the rare available “system” studies are purely theoretical, and their predictions on the putative benefit/cost balance of this peculiar genetic organization have not received experimental support. In light of ongoing progresses in general virology, we here challenge the current hypotheses explaining the evolutionary success of multipartite viruses and emphasize their shortcomings. We also discuss alternative ideas and research avenues to be explored in the future in order to solve the long-standing mystery of how viral systems composed of interdependent but physically separated information units can actually be functional.
Collapse
|