1
|
Rosenn EH, Korlansky M, Benyaminpour S, Munarova V, Fox E, Shah D, Durham A, Less N, Pasinetti GM. Antibody immunotherapies for personalized opioid addiction treatment. J Pharmacol Exp Ther 2025; 392:103522. [PMID: 40112764 DOI: 10.1016/j.jpet.2025.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/16/2025] [Indexed: 03/22/2025] Open
Abstract
Approved therapies for managing opioid addiction involve intensive treatment regimens which remain both costly and ineffective. As pharmaceutical interventions have achieved variable success treating substance use disorders (SUD), alternative therapeutics must be considered. Antidrug antibodies induced by vaccination or introduced as monoclonal antibody formulations can neutralize or destroy opioids in circulation before they reach their central nervous system targets or act as enzymes to deactivate opioid receptors, preventing the physiologic and psychoactive effects of the substance. A lack of "reward" for those suffering from SUD has been shown to result in cessation of use and promote long-term abstinence. Decreased antibody production costs and the advent of novel gene therapies that stimulate in vivo production of monoclonal antibodies have renewed interest in this strategy. Furthermore, advances in understanding of SUD immunopathogenesis have revealed distinct mechanisms of neuroimmune dysregulation underlying the disorder. Beyond assisting with cessation of drug use, antibody therapies could treat or reverse pathophysiologic hallmarks that contribute to addiction and which could be the cause of chronic cognitive defects resulting from drug use. In this review, we synthesize key current literature regarding the efficacy of immunotherapies in managing opioid addiction and SUD. We will explore the neuropharmacology underlying these treatments by relating evidence from studies on the use of antibody therapeutics to counteract various drug behaviors and by drawing parallels to the similar immunopathology observed in neurodegenerative disorders. Finally, we will discuss the implications of novel immunization technologies and the application of computational methods in developing personalized addiction treatments. SIGNIFICANCE STATEMENT: Significant new evidence contributing to our understanding of substance use disorders has recently emerged leading to a paradigm shift concerning the role of immunology in the neuropathogenesis of opioid use disorder. Concurrently, immunotherapeutic technologies such as antibody therapeutics have advanced the capabilities regarding applications that take advantage of these key principles. This article reviews key antibody-based treatments being studied and highlights directions for further research that may contribute to the management of opioid use disorder.
Collapse
Affiliation(s)
- Eric H Rosenn
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | | | | | - Violet Munarova
- College of Osteopathic Medicine, Touro University, New York, New York
| | - Eryn Fox
- Department of Allergy and Immunology, Montefiore Medical Center-Albert Einstein College of Medicine, Bronx, New York, New York
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicole Less
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York.
| |
Collapse
|
2
|
Tuncturk M, Kushwaha S, Heider RM, Oesterle T, Weinshilboum R, Ho MF. The development of opioid vaccines as a novel strategy for the treatment of opioid use disorder and overdose prevention. Int J Neuropsychopharmacol 2025; 28:pyaf005. [PMID: 39831679 PMCID: PMC11792077 DOI: 10.1093/ijnp/pyaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
Opioid use disorder (OUD) affects over 40 million people worldwide, creating significant social and economic burdens. Medication for opioid use disorder (MOUD) is often considered the primary treatment approach for OUD. MOUD, including methadone, buprenorphine, and naltrexone, is effective for some, but its benefits may be limited by poor adherence to treatment recommendations. Immunopharmacotherapy offers an innovative approach by using vaccines to generate antibodies that neutralize opioids, blocking them from crossing the blood-brain barrier and reducing their psychoactive effects. To date, only 3 clinical trials for opioid vaccines have been published. While these studies demonstrated the potential of opioid vaccines for relapse prevention, there is currently no standardized protocol for evaluating their effectiveness. We have reviewed recent preclinical studies that demonstrated the efficacy of vaccines targeting opioids, including heroin, morphine, oxycodone, hydrocodone, and fentanyl. These studies showed that vaccines against opioids reduced drug reinforcement, decreased opioid-induced antinociception, and increased survival rates against lethal opioid doses. These studies also demonstrated the importance of vaccine formulation and the use of adjuvants in enhancing antibody production and specificity. Finally, we highlighted the strengths and concerns associated with the opioid vaccine treatment, including ethical considerations.
Collapse
Affiliation(s)
- Mustafa Tuncturk
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Shikha Kushwaha
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Robin M Heider
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Tyler Oesterle
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Ming-Fen Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Moore GJ, Ridway H, Gadanec LK, Apostolopoulos V, Zulli A, Swiderski J, Kelaidonis K, Vidali VP, Matsoukas MT, Chasapis CT, Matsoukas JM. Structural Features Influencing the Bioactive Conformation of Angiotensin II and Angiotensin A: Relationship between Receptor Desensitization, Addiction, and the Blood-Brain Barrier. Int J Mol Sci 2024; 25:5779. [PMID: 38891966 PMCID: PMC11171751 DOI: 10.3390/ijms25115779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity, implicating a specialized function for this cluster. In contrast, angiotensin A (ARVYIHPF; AngA) has reduced bioactivity at AT1R; however, replacement of Asp in AngII with sarcosine (N-methyl-glycine) not only restores bioactivity but increases the activity of agonist, antagonist, and inverse agonist analogues. A bend produced at the N-terminus by the introduction of the secondary amino acid sarcosine is thought to realign the functional groups that chaperone the C-terminal portion of AngII, allowing transfer of the negative charge originating at the C-terminus to be transferred to the Tyr hydroxyl-forming tyrosinate anion, which is required to activate the receptor and desensitizes the receptor (tachyphylaxis). Peptide (sarilesin) and nonpeptide (sartans) moieties, which are long-acting inverse agonists, appear to desensitize the receptor by a mechanism analogous to tachyphylaxis. Sartans/bisartans were found to bind to alpha adrenergic receptors resulting in structure-dependent desensitization or resensitization. These considerations have provided information on the mechanisms of receptor desensitization/tolerance and insights into possible avenues for treating addiction. In this regard sartans, which appear to cross the blood-brain barrier more readily than bisartans, are the preferred drug candidates.
Collapse
Affiliation(s)
- Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Harry Ridway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | - Jordan Swiderski
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
| | | | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - John M. Matsoukas
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Immunology and Translational Research, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (V.A.); (A.Z.); (J.S.)
- NewDrug/NeoFar PC, Patras Science Park, 26504 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Wang K, Wang H, Wang X. Next-generation vaccines for substance use disorders. Zool Res 2024; 45:707-708. [PMID: 38766752 PMCID: PMC11188595 DOI: 10.24272/j.issn.2095-8137.2023.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Kaixuan Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. E-mail:
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail:
| |
Collapse
|
5
|
Lu T, Li X, Zheng W, Kuang C, Wu B, Liu X, Xue Y, Shi J, Lu L, Han Y. Vaccines to Treat Substance Use Disorders: Current Status and Future Directions. Pharmaceutics 2024; 16:84. [PMID: 38258095 PMCID: PMC10820210 DOI: 10.3390/pharmaceutics16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Addiction, particularly in relation to psychostimulants and opioids, persists as a global health crisis with profound social and economic ramifications. Traditional interventions, including medications and behavioral therapies, often encounter limited success due to the chronic and relapsing nature of addictive disorders. Consequently, there is significant interest in the development of innovative therapeutics to counteract the effects of abused substances. In recent years, vaccines have emerged as a novel and promising strategy to tackle addiction. Anti-drug vaccines are designed to stimulate the immune system to produce antibodies that bind to addictive compounds, such as nicotine, cocaine, morphine, methamphetamine, and heroin. These antibodies effectively neutralize the target molecules, preventing them from reaching the brain and eliciting their rewarding effects. By obstructing the rewarding sensations associated with substance use, vaccines aim to reduce cravings and the motivation to engage in drug use. Although anti-drug vaccines hold significant potential, challenges remain in their development and implementation. The reversibility of vaccination and the potential for combining vaccines with other addiction treatments offer promise for improving addiction outcomes. This review provides an overview of anti-drug vaccines, their mechanisms of action, and their potential impact on treatment for substance use disorders. Furthermore, this review summarizes recent advancements in vaccine development for each specific drug, offering insights for the development of more effective and personalized treatments capable of addressing the distinct challenges posed by various abused substances.
Collapse
Affiliation(s)
- Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Bingyi Wu
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China;
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China;
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing 100191, China; (T.L.); (X.L.); (Y.X.); (J.S.)
| |
Collapse
|
6
|
Hall W, Gartner C, Morphett K. How has the brain disease model of addiction contributed to tobacco control? Drug Alcohol Depend 2023; 253:111033. [PMID: 38006672 DOI: 10.1016/j.drugalcdep.2023.111033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Our paper evaluates the extent to which the brain disease model of addiction (BDMA) has contributed to reducing the prevalence of tobacco smoking and tobacco-related harm over the past 20 years. We discuss the ways in which genetic and neuroscience research on nicotine addiction have contributed to our understanding of tobacco smoking. We then examine the extent to which the BDMA has produced more effective treatments to assist smoking cessation. We also assess the degree to which the BDMA has contributed to the tobacco control policies that have produced substantial reductions in tobacco-related morbidity and mortality in the two decades since the model was first proposed by Alan Leshner. We also assess whether the BDMA has reduced the stigmatisation of people who smoke tobacco.
Collapse
Affiliation(s)
- Wayne Hall
- The National Centre for Youth Substance Use Research, the University of Queensland, Australia.
| | - Coral Gartner
- The School of Public Health, The University of Queensland, Australia
| | - Kylie Morphett
- The School of Public Health, The University of Queensland, Australia
| |
Collapse
|
7
|
Prasad S, Mathew PS, Piper BJ, Kaur K, Tian M. The Neurobiology of Methamphetamine Addiction and the Potential to Reduce Misuse Through Conjugate Vaccines Targeting Toll-Like Receptor 4. Cureus 2023; 15:e40259. [PMID: 37440809 PMCID: PMC10335775 DOI: 10.7759/cureus.40259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
The methamphetamine epidemic continues to worsen each year and has contributed to more overdose deaths than opioids. Methamphetamine was listed in the top ten lethal drugs in 2021 in the United States. The drug has been shown to cause health problems such as addiction and neurological and behavioral changes. One possible solution to address this crisis is through vaccinations. Vaccinations consist of injecting a controlled substance with the goal of creating compound-specific antibodies. Although still early in development, vaccinations have been found to improve withdrawal symptoms and decrease drug-seeking behavior with minimal health side effects in rodent studies. This paper provides an overview of the clinical presentation and neurobiology of methamphetamine addiction and drug-seeking behaviors. The responses and adverse effects of conjugate vaccines IXTv-100 with adjuvant glucopyranosyl lipid A administered in oil-water stable emulsion and tetanus-toxoid conjugated to succinyl-methamphetamine adsorbed on aluminum hydroxide combined with adjuvant E6020 are examined.
Collapse
Affiliation(s)
- Savita Prasad
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | - Phoebe S Mathew
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | - Brian J Piper
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | - Karndeep Kaur
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | - Maria Tian
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| |
Collapse
|
8
|
Tryptophan and Substance Abuse: Mechanisms and Impact. Int J Mol Sci 2023; 24:ijms24032737. [PMID: 36769059 PMCID: PMC9917371 DOI: 10.3390/ijms24032737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Addiction, the continuous misuse of addictive material, causes long-term dysfunction in the neurological system. It substantially affects the control strength of reward, memory, and motivation. Addictive substances (alcohol, marijuana, caffeine, heroin, methamphetamine (METH), and nicotine) are highly active central nervous stimulants. Addiction leads to severe health issues, including cardiovascular diseases, serious infections, and pulmonary/dental diseases. Drug dependence may result in unfavorable cognitive impairments that can continue during abstinence and negatively influence recovery performance. Although addiction is a critical global health challenge with numerous consequences and complications, currently, there are no efficient options for treating drug addiction, particularly METH. Currently, novel treatment approaches such as psychological contingency management, cognitive behavioral therapy, and motivational enhancement strategies are of great interest. Herein, we evaluate the devastating impacts of different addictive substances/drugs on users' mental health and the role of tryptophan in alleviating unfavorable side effects. The tryptophan metabolites in the mammalian brain and their potential to treat compulsive abuse of addictive substances are investigated by assessing the functional effects of addictive substances on tryptophan. Future perspectives on developing promising modalities to treat addiction and the role of tryptophan and its metabolites to alleviate drug dependency are discussed.
Collapse
|