1
|
Ibarz-Pavon AB, Bielsky MC, Bose R, Cavaleri M, Crump JA, Hombach J, Kaslow DC, Khaman F, MacLennan CA, Mehring-LeDoare K, Pollard AJ, Quadri F, John J, Wilder-Smith A. Consultation report - considerations for a regulatory pathway for bivalent Salmonella Typhi/Paratyphi A vaccines for use in endemic countries. Vaccine 2025; 56:127189. [PMID: 40318346 DOI: 10.1016/j.vaccine.2025.127189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Enteric fever caused by Salmonella enterica serovars Typhi and Paratyphi A and, to a lesser extent, S. Paratyphi B and C, remains a significant cause of mortality and morbidity in resource-constrained settings. Typhoid conjugate vaccines (TCVs) protect against S. Typhi but no vaccine to date protects against paratyphoid fever. There are several bivalent S. Typhi/Paratyphi A products in development; however, the low incidence of paratyphoid fever in many settings limits the feasibility of phase 3 efficacy studies. Two bivalent vaccines adding the S. Paratyphi A-specific O:2 lipopolysaccharide conjugated to a protein carrier to TCV constructs have successfully completed phase 1 studies and will progress rapidly in their development. The WHO's Product Development for Vaccines Advisory Committee (PDVAC) endorsed a regulatory pathway for a bivalent S. Typhi/Paratyphi A vaccine that contemplates demonstrating protective efficacy against S. Paratyphi A infection in a controlled human infection model (CHIM). Since the use of CHIM data in lieu of phase 3 efficacy studies and to identify markers of immune protection is not yet widely accepted by regulatory bodies, the WHO organized a consultation with vaccine developers, manufacturers, and regulators. The purpose of the meeting was to discuss the feasibility and considerations for the licensure of a bivalent S. Typhi/Paratyphi A vaccine. The aim of the consultation was to gain alignment among key stakeholders and facilitate the pathway to licensure in endemic countries.
Collapse
Affiliation(s)
- Ana Belen Ibarz-Pavon
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland.
| | | | - Rubina Bose
- Central Drugs Standard Control Organization (CDSCO), India
| | | | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Joachim Hombach
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| | - David C Kaslow
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Farhana Khaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Calman A MacLennan
- Bill & Melinda Gates Foundation, Enteric & Diarrheal Diseases, 440 5th Ave N, Seattle, WA 98109, USA; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kirsty Mehring-LeDoare
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland; City St. George's, University of London, London, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and The NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Firdausi Quadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jacob John
- Christian Medical College, Vellore, India
| | - Annelies Wilder-Smith
- World Health Organization, Department of Immunization, Vaccines and Biologicals, Geneva, Switzerland
| |
Collapse
|
2
|
An SJ, Yang JS, Chae MH, Woo JS, Kang YE, Ganapathy R, Pansuriya RK, Choi JA, Yoon YK, Lee E, Lee SB, Pandey G, Lee JW, Lee JS, Bae SH, Kweon SW, Kim SJ, Seon SH, Kim JH, Song M. Development of invasive non-typhoidal Salmonella conjugate vaccines and their evaluation in a trivalent formulation with typhoid conjugate vaccine. Vaccine 2025; 52:126913. [PMID: 40020336 PMCID: PMC11997612 DOI: 10.1016/j.vaccine.2025.126913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Invasive nontyphoidal Salmonella (iNTS) infections, primarily caused by Salmonella enterica serovars Typhimurium (S. Typhimurium) and Enteritidis (S. Enteritidis), represent a significant public health concern, particularly in sub-Saharan Africa, where multidrug-resistant (MDR) strains are increasingly prevalent. Despite the substantial disease burden, no vaccines are currently licensed for iNTS. This study aimed to develop an iNTS conjugate vaccine by conjugating O-specific polysaccharide (OSP) antigens to carrier proteins using chemical conjugation, a proven method known for its efficiency and scalability in licensed glycoconjugate vaccines. Various carrier proteins and chemical conjugation processes were evaluated to optimize the iNTS OSP conjugate vaccine candidates. Through this optimization, diphtheria toxoid (DT) was identified as the carrier protein that significantly enhances the anti-OSP immunogenicity of the iNTS conjugates. Key properties, such as the molecular weight and OSP:DT ratio in the iNTS OSP conjugate were found to be controllable by adjusting the ratios of CDAP conjugate reagent and DT to iNTS OSP. Optimal conjugation process parameters were identified by evaluating the relationship between these property and immunogenicity through tests in mice. The optimized iNTS conjugates for S. Typhimurium and S. Enteritidis were further developed into a bivalent formulation. This formulation was selected based on a dose-dependent immunogenicity study and included alum as an adjuvant to enhance immune response. Ultimately, a trivalent drug product formulation was developed by combining the bivalent iNTS conjugate vaccine with a typhoid conjugate vaccine. Our findings demonstrated that the iNTS OSP-DT conjugates, at the optimal conjugation ratios, induced robust immune responses with high anti-OSP IgG titers for both iNTS serovars, comparable to or exceeding those of other formulations. The inclusion of alum further enhanced immunogenicity across all formulations. Notably, the trivalent vaccine formulation showed promising results, maintaining robust immunogenic responses against all iNTS OSP antigens and the Vi polysaccharide antigen of Salmonella Typhi, without compromising the immunogenicity of any individual antigens. This study suggests that a bivalent iNTS vaccine combined with a typhoid conjugate vaccine could provide broad protection against both iNTS infections and typhoid fever, addressing a critical unmet need in regions with limited resources.
Collapse
Affiliation(s)
- So Jung An
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jae Seung Yang
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Myung Hwa Chae
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Joo Sung Woo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Ye Eun Kang
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Ravi Ganapathy
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Ruchir Kumar Pansuriya
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jung Ah Choi
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Yeon Kyung Yoon
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Eugene Lee
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seul Bee Lee
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Gaurav Pandey
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Ji Won Lee
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Ji Soo Lee
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - So Hee Bae
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Soh-Won Kweon
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Soo Ji Kim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Seung Han Seon
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jerome H Kim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Manki Song
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Sastalla I, Kwon K, Huntley C, Taylor K, Brown L, Samuel T, Zou L. NIAID Workshop Report: Systematic Approaches for ESKAPE Bacteria Antigen Discovery. Vaccines (Basel) 2025; 13:87. [PMID: 39852866 PMCID: PMC11768834 DOI: 10.3390/vaccines13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
On 14-15 November 2023, the National Institute of Allergy and Infectious Diseases (NIAID) organized a workshop entitled "Systematic Approaches for ESKAPE Bacteria Antigen Discovery". The goal of the workshop was to engage scientists from diverse relevant backgrounds to explore novel technologies that can be harnessed to identify and address current roadblocks impeding advances in antigen and vaccine discoveries for the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). The workshop consisted of four sessions that addressed ESKAPE infections, antigen discovery and vaccine efforts, and new technologies including systems immunology and vaccinology approaches. Each session was followed by a panel discussion. In total, there were over 260 in-person and virtual attendees, with high levels of engagement. This report provides a summary of the event and highlights challenges and opportunities in the field of ESKAPE vaccine discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lanling Zou
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (I.S.); (K.K.); (C.H.); (K.T.); (L.B.); (T.S.)
| |
Collapse
|
4
|
Zizza A, Fallucca A, Guido M, Restivo V, Roveta M, Trucchi C. Foodborne Infections and Salmonella: Current Primary Prevention Tools and Future Perspectives. Vaccines (Basel) 2024; 13:29. [PMID: 39852807 PMCID: PMC11768952 DOI: 10.3390/vaccines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Salmonella is considered the major zoonotic and foodborne pathogen responsible for human infections. It includes the serovars causing typhoid fever (S. typhi and S. paratyphi) and the non-typhoidal salmonella (NTS) serovars (S. enteritidis and S. typhimurium), causing enteric infections known as "Salmonellosis". NTS represents a major public health burden worldwide. The consumption of S. enteritidis-contaminated animal foods is the main source of this disease in humans, and eradicating bacteria from animals remains a challenge. NTS causes various clinical manifestations, depending on the quantity of bacteria present in the food and the immune status of the infected individual, ranging from localized, self-limiting gastroenteritis to more serious systemic infections. Salmonellosis prevention is based on hygienic and behavioral rules related to food handling that aim to reduce the risk of infection. However, no vaccine against NTS is available for human use. This aspect, in addition to the increase in multidrug-resistant strains and the high morbidity, mortality, and socioeconomic costs of NTS-related diseases, makes the development of new prevention and control strategies urgently needed. The success of the vaccines used to protect against S. typhi encouraged the development of NTS vaccine candidates, including live attenuated, subunit-based, and recombinant-protein-based vaccines. In this review, we discuss the epidemiological burden of Salmonellosis and its primary prevention, focusing on the current status and future perspectives of the vaccines against NTS.
Collapse
Affiliation(s)
- Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Alessandra Fallucca
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| |
Collapse
|
5
|
Boerth EM, Gong J, Roffler B, Hancock Z, Berger L, Song B, Malley SF, MacLennan CA, Zhang F, Malley R, Lu YJ. Evaluation of a Quadrivalent Shigella flexneri Serotype 2a, 3a, 6, and Shigella sonnei O-Specific Polysaccharide and IpaB MAPS Vaccine. Vaccines (Basel) 2024; 12:1091. [PMID: 39460258 PMCID: PMC11510904 DOI: 10.3390/vaccines12101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Shigellosis is the leading cause of diarrheal deaths worldwide and is particularly dangerous in children under 5 years of age in low- and middle-income countries. Additionally, the rise in antibiotic resistance has highlighted the need for an effective Shigella vaccine. Previously, we have used the Multiple Antigen-Presenting System (MAPS) technology to generate monovalent and quadrivalent Salmonella MAPS vaccines that induce functional antibodies against Salmonella components. METHODS In this work, we detail the development of several monovalent vaccines using O-specific polysaccharides (OSPs) from four dominant serotypes, S. flexneri 2a, 3a, and 6, and S. sonnei. We tested several rhizavidin (rhavi) fusion proteins and selected a Shigella-specific protein IpaB. Quadrivalent MAPS were made with Rhavi-IpaB protein and tested in rabbits for immunogenicity. RESULTS Individual MAPS vaccines generated robust, functional antibody responses against both IpaB and the individual OSP component. Antibodies to IpaB were effective across Shigella serotypes. We also demonstrate that the OSP antibodies generated are specific to each homologous Shigella O type by performing ELISA and bactericidal assays. We combined the components of each MAPS vaccine to formulate a quadrivalent MAPS vaccine which elicited similar antibody and bactericidal responses compared to their monovalent counterparts. Finally, we show that the quadrivalent MAPS immune sera are functional against several clinical isolates of the serotypes used in the vaccine. CONCLUSIONS This quadrivalent MAPS Shigella vaccine is immunogenicity and warrants further study.
Collapse
Affiliation(s)
- Emily M. Boerth
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joyce Gong
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Becky Roffler
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zoe Hancock
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lydia Berger
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Boni Song
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha F. Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Calman A. MacLennan
- Enteric & Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Martin LB, Tack B, Marchello CS, Sikorski MJ, Owusu-Dabo E, Nyirenda T, Mogasale V, Crump JA. Vaccine value profile for invasive non-typhoidal Salmonella disease. Vaccine 2024; 42:S101-S124. [PMID: 39003017 DOI: 10.1016/j.vaccine.2024.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 07/15/2024]
Abstract
Invasive non-typhoidal Salmonella (iNTS) disease is an under-recognized high-burden disease causing major health and socioeconomic issues in sub-Saharan Africa (sSA), predominantly among immune-naïve infants and young children, including those with recognized comorbidities such as HIV infection. iNTS disease is primarily caused by Salmonella enterica serovar Typhimurium sequence type (ST) 313 and 'African-restricted clades' of Salmonella Enteritidis ST11 that have emerged across the African continent as a series of epidemics associated with acquisition of new antimicrobial resistance. Due to genotypes with a high prevalence of antimicrobial resistance and scarcity of therapeutic options, these NTS serovars are designated by the World Health Organization as a priority pathogen for research and development of interventions, including vaccines, to address and reduce NTS associated bacteremia and meningitis in sSA. Novel and traditional vaccine technologies are being applied to develop vaccines against iNTS disease, and the results of the first clinical trials in the infant target population should become available in the near future. The "Vaccine Value Profile" (VVP) addresses information related predominantly to invasive disease caused by Salmonella Enteritidis and Salmonella Typhimurium prevalent in sSA. Information is included on stand-alone iNTS disease candidate vaccines and candidate vaccines targeting iNTS disease combined with another invasive serotype, Salmonella Typhi, that is also common across sSA. Out of scope for the first version of this VVP is a wider discussion on either diarrheagenic NTS disease (dNTS) also associated with Salmonella Enteritidis and Salmonella Typhimurium or the development of a multivalent Salmonella vaccines targeting key serovars for use globally. This VVP for vaccines to prevent iNTS disease is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic, and societal value of pipeline vaccines and vaccine-like products. Future versions of this VVP will be updated to reflect ongoing activities such as vaccine development strategies and a "Full Vaccine Value Assessment" that will inform the value proposition of an iNTS disease vaccine. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations, and in collaboration with stakeholders from the World Health Organization African Region. All contributors have extensive expertise on various elements of the iNTS disease VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
| | - Bieke Tack
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Belgium and Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium.
| | | | - Michael J Sikorski
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | - John A Crump
- Centre for International Health, University of Otago, New Zealand.
| |
Collapse
|
7
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
8
|
Malley R, Lu YJ, Sebastian S, Zhang F, Willer DO. Multiple antigen presenting system (MAPS): state of the art and potential applications. Expert Rev Vaccines 2024; 23:196-204. [PMID: 38174559 DOI: 10.1080/14760584.2023.2299384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components. AREAS COVERED This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings. EXPERT OPINION The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.
Collapse
Affiliation(s)
- Richard Malley
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Fan Zhang
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - David O Willer
- GSK, Global Medical Affairs, Vaccines Research and Development, Mississauga, Ontario, Canada
| |
Collapse
|