1
|
Li QJ, Shao HH, Zheng LL, Liu Q, Huo CC, Yi DR, Feng T, Cen S. Thonningianin A disrupts pA104R-DNA binding and inhibits African swine fever virus replication. Emerg Microbes Infect 2025; 14:2482697. [PMID: 40138179 PMCID: PMC11966994 DOI: 10.1080/22221751.2025.2482697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
African swine fever is a highly lethal disease caused by the African swine fever virus (ASFV), posing a significant threat to the global pig industry, wherease no approved treatments are currently available. The ASFV DNA-binding protein, pA104R, plays a critical role in viral genome packaging and replication, making it a key target for drug discovery. Through structure-based virtual screening, we identified a polyphenolic compound, thonningianin A, which disrupts the pA104R-DNA binding and significantly inhibits ASFV replication. Mechanistic study revealed that thonningianin A binds to the DNA-binding region of pA104R, forming strong hydrogen bonds with H100 and occupying the vital DNA-binding residues K92, R94, and K97. In addition, we resolved the high-resolution (1.8 Å) structure of pA104R (PDB ID 9JS5), providing valuable insights for future drug screening. Together, these results demonstrate that thonningianin A holds great potential for the development of anti-ASFV drug, as a herb extract with favourable pharmacokinetic properties and safety.
Collapse
Affiliation(s)
- Quan-jie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hui-han Shao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Lin-lin Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
| | - Qian Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Chen-chao Huo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Dong-rong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Feng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- CAMS Key Laboratory of Antiviral Drug Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Zhang X, Zhou L, Ge X, Gao P, Zhou Q, Han J, Guo X, Zhang Y, Yang H. Advances in the diagnostic techniques of African swine fever. Virology 2025; 603:110351. [PMID: 39693789 DOI: 10.1016/j.virol.2024.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
African swine fever (ASF) is a highly contagious disease of pigs caused by African swine fever virus, which poses a huge threat to the global swine industry and is therefore listed as a notifiable disease by the World Organization for Animal Health. Due to the global lack of safe and efficacious vaccines and therapeutic drugs, early diagnosis of cases, whether on-site or laboratory, are crucial for the prevention and control of ASF. Therefore, rapid and reliable diagnosis and detection have become the main means to combat ASF. In this paper, various diagnostic techniques developed globally for ASF diagnosis, including etiological, molecular biological and serological diagnostic techniques, as well as conventional and novel diagnostic techniques, were comprehensively reviewed, and the main advantages and disadvantages of currently commonly used diagnostic techniques were introduced. It is expected that this paper will provide references for selecting appropriate ASF diagnostic techniques in different application scenarios, and also provide directions for the development of innovative diagnostic techniques for ASF in the future.
Collapse
Affiliation(s)
- Xin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Zhu R, Wang Y, Zhang H, Yang J, Fan J, Zhang Y, Wang Y, Li Q, Zhou X, Yue H, Qi Y, Wang S, Chen T, Zhang S, Hu R. Deletion of the B125R gene in the African swine fever virus SY18 strain leads to an A104R frameshift mutation slightly attenuating virulence in domestic pigs. Virus Res 2024; 343:199343. [PMID: 38423214 PMCID: PMC10982076 DOI: 10.1016/j.virusres.2024.199343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
African swine fever (ASF), caused by the ASF virus (ASFV), is a hemorrhagic and fatal viral disease that affects Eurasian wild boars and domestic pigs, posing a substantial threat to the global pig breeding industry. ASFV, a double-stranded DNA virus, possesses a large genome containing up to 160 open reading frames, most of which exhibit unknown functions. The B125R gene of ASFV, located at the 105595-105972 bp site in the ASFV-SY18 genome, remains unexplored. In this study, we discovered that B125R deletion did not affect recombinant virus rescue, nor did it hinder viral replication during the intermediate growth phase. Although the virulence of the recombinant strain harboring this deletion was attenuated, intramuscular inoculation of the recombinant virus in pigs at doses of 102 or 104 TCID50 resulted in mortality. Moreover, sequencing analysis of six recombinant strains obtained from three independent experiments consistently revealed an adenine insertion at the 47367-47375 bp site in the A104R gene due to the B125R deletion, leading to premature termination of this gene. Intriguingly, this insertion did not influence the transcription of the A104R gene between the recombinant and parental strains. Consequently, we postulate that the deletion of the B125R gene in ASFV-SY18 or other genotype II strains may marginally attenuate virulence in domestic pigs.
Collapse
Affiliation(s)
| | | | - Han Zhang
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jinjin Yang
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jiaqi Fan
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yanyan Zhang
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yu Wang
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Qixuan Li
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xintao Zhou
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Huixian Yue
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yu Qi
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Shuchao Wang
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Teng Chen
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Shoufeng Zhang
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| |
Collapse
|
5
|
Lu P, Zhou J, Wei S, Takada K, Masutani H, Okuda S, Okamoto K, Suzuki M, Kitamura T, Masujin K, Kokuho T, Itoh H, Nagata K. Comparative genomic and transcriptomic analyses of African swine fever virus strains. Comput Struct Biotechnol J 2023; 21:4322-4335. [PMID: 37711186 PMCID: PMC10497913 DOI: 10.1016/j.csbj.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023] Open
Abstract
African swine fever (ASF) is the most devastating disease caused by the African swine fever virus (ASFV), impacting the pig industry worldwide and threatening food security and biodiversity. Although two vaccines have been approved in Vietnam to combat ASFV, the complexity of the virus, with its numerous open reading frames (ORFs), necessitates a more diverse vaccine strategy. Therefore, we focused on identifying and investigating the potential vaccine targets for developing a broad-spectrum defense against the virus. This study collected the genomic and/or transcriptomic data of different ASFV strains, specifically from in vitro studies, focusing on comparisons between genotypes I, II, and X, from the National Center for Biotechnology Information (NCBI) database. The comprehensive analysis of the genomic and transcriptomic differences between high- and low-virulence strains revealed six early genes, 13 late genes, and six short genes as potentially essential ORFs associated with high-virulence. In addition, many other ORFs (e.g., 14 multigene family members) are worth investigating. The results of this study provided candidate ORFs for developing ASF vaccines and therapies.
Collapse
Affiliation(s)
- Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqiao Zhou
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sibo Wei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Konosuke Takada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hayato Masutani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoya Kitamura
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Kentaro Masujin
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Takehiro Kokuho
- African Swine Fever Unit, National Institute of Animal Health, National A griculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Zhao H, Wang G, Dong H, Wu S, Du Y, Wan B, Ji P, Wu Y, Jiang D, Zhuang G, Duan H, Zhang G, Zhang A. Identification of a Linear B Cell Epitope on p54 of African Swine Fever Virus Using Nanobodies as a Novel Tool. Microbiol Spectr 2023; 11:e0336222. [PMID: 37191526 PMCID: PMC10269858 DOI: 10.1128/spectrum.03362-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
African swine fever (ASF) has received great attention from the swine industry due to the pandemic and the lack of vaccines or effective treatments. In the present study, 13 African swine fever virus (ASFV) p54-specific nanobodies (Nbs) were successfully screened based on Bactrian camel immunization of p54 protein and phage display technology, and their reactivity with the p54 C-terminal domain (p54-CTD) was determined; however, only Nb8-horseradish peroxidase (Nb8-HRP) exhibited the best reactivity. Immunoperoxidase monolayer assay (IPMA) and immunofluorescence assay (IFA) results indicated that Nb8-HRP specifically reacted with ASFV-infected cells. Then, the possible epitopes of p54 were identified using Nb8-HRP. The results showed that Nb8-HRP could recognize p54-CTD truncated mutant p54-T1. Then, 6 overlapping peptides covering p54-T1 were synthesized to determine the possible epitopes. Dot blot and peptide-based enzyme-linked immunosorbent assay (ELISA) results suggested that one novel minimal linear B cell epitope, 76QQWVEV81, which had never been reported before, was identified. Alanine-scanning mutagenesis revealed that 76QQWV79 was the core binding site for Nb8. Epitope 76QQWVEV81 was highly conserved among genotype II ASFV strains and could react with inactivated ASFV antibody-positive serum from naturally infected pigs, indicating that it was a natural linear B cell epitope. These findings provide valuable insights for vaccine design and p54 as an effective diagnostic tool. IMPORTANCE The ASFV p54 protein plays an important role in inducing neutralization antibodies in vivo after viral infection and is often used as a candidate protein for subunit vaccine development. The full understanding of the p54 protein epitope provides a sufficient theoretical basis for p54 as a vaccine candidate protein. The present study uses a p54-specific nanobody as a probe to identify a highly conserved antigenic epitope, 76QQWVEV81, among different ASFV strains, and it can induce humoral immune responses in pigs. This is the first report using virus-specific nanobodies as a tool to identify some special epitopes that cannot be recognized by conventional monoclonal antibodies. This study opens up nanobodies as a new tool for identifying epitopes and also provides a theoretical basis for understanding p54-induced neutralizing antibodies.
Collapse
Affiliation(s)
- Huijun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Gaijie Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Haoxin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Shuya Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Pengchao Ji
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Yanan Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Dawei Jiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Guoqing Zhuang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Henan Engineering Laboratory of Animal Biological Products, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Afe AE, Shen ZJ, Guo X, Zhou R, Li K. African Swine Fever Virus Interaction with Host Innate Immune Factors. Viruses 2023; 15:1220. [PMID: 37376520 DOI: 10.3390/v15061220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
African swine fever virus (ASFV) adversely affects pig farming owing to its 100% mortality rate. The condition is marked by elevated body temperature, bleeding, and ataxia in domestic pigs, whereas warthogs and ticks remain asymptomatic despite being natural reservoirs for the virus. Breeding ASFV-resistant pigs is a promising solution for eradicating this disease. ASFV employs several mechanisms to deplete the host antiviral response. This review explores the interaction of ASFV proteins with innate host immunity and the various types of machinery encompassed by viral proteins that inhibit and induce different signaling pathways, such as cGAS-STING, NF-κB, Tumor growth factor-beta (TGF-β), ubiquitination, viral inhibition of apoptosis, and resistance to ASFV infection. Prospects for developing a domestic pig that is resistant to ASFV are also discussed.
Collapse
Affiliation(s)
- Ayoola Ebenezer Afe
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhao-Ji Shen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaorong Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528231, China
| | - Rong Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
8
|
Yang S, Miao C, Liu W, Zhang G, Shao J, Chang H. Structure and function of African swine fever virus proteins: Current understanding. Front Microbiol 2023; 14:1043129. [PMID: 36846791 PMCID: PMC9950752 DOI: 10.3389/fmicb.2023.1043129] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
African swine fever virus (ASFV) is a highly infectious and lethal double-stranded DNA virus that is responsible for African swine fever (ASF). ASFV was first reported in Kenya in 1921. Subsequently, ASFV has spread to countries in Western Europe, Latin America, and Eastern Europe, as well as to China in 2018. ASFV epidemics have caused serious pig industry losses around the world. Since the 1960s, much effort has been devoted to the development of an effective ASF vaccine, including the production of inactivated vaccines, attenuated live vaccines, and subunit vaccines. Progress has been made, but unfortunately, no ASF vaccine has prevented epidemic spread of the virus in pig farms. The complex ASFV structure, comprising a variety of structural and non-structural proteins, has made the development of ASF vaccines difficult. Therefore, it is necessary to fully explore the structure and function of ASFV proteins in order to develop an effective ASF vaccine. In this review, we summarize what is known about the structure and function of ASFV proteins, including the most recently published findings.
Collapse
Affiliation(s)
| | | | - Wei Liu
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guanglei Zhang
- African Swine Fever Regional Laboratory of China (Lanzhou), State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | |
Collapse
|
9
|
Lv C, Zhang Q, Zhao L, Yang J, Zou Z, Zhao Y, Li C, Sun X, Lin X, Jin M. African swine fever virus infection activates inflammatory responses through downregulation of the anti-inflammatory molecule C1QTNF3. Front Immunol 2022; 13:1002616. [PMID: 36311798 PMCID: PMC9598424 DOI: 10.3389/fimmu.2022.1002616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is the most dangerous pig disease, and causes enormous economic losses in the global pig industry. However, the mechanisms of ASF virus (ASFV) infection remains largely unclear. Hence, this study investigated the host response mechanisms to ASFV infection. We analyzed the differentially expressed proteins (DEPs) between serum samples from ASFV-infected and uninfected pigs using quantitative proteomics. Setting the p-value < 0.05 and |log2 (fold change)| > 1.5, we identified 173 DEPs, comprising 57 upregulated and 116 downregulated proteins, which belonged to various biological processes and pathways based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. The enriched pathways include immune responses, metabolism, and inflammation signaling pathways. Western blot analysis validated the DEPs identified using quantitative proteomics. Furthermore, our proteomics data showed that C1QTNF3 regulated the inflammatory signaling pathway. C1QTNF3 knockdown led to the upregulation of pro-inflammatory factors IL-1β, IL-8, and IL-6, thus inhibiting ASFV replication. These results indicated that C1QTNF3 was critical for ASFV infection. In conclusion, this study revealed the molecular mechanisms underlying the host-ASFV interaction, which may contribute to the development of novel antiviral strategies against ASFV infection in the future.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- New-onset department, Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiang Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jingyu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhong Zou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- New-onset department, Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
| | - Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chengfei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaomei Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xian Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Xian Lin, ; Meilin Jin,
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- New-onset department, Research Institute of Wuhan Keqian Biology Co., Ltd, Wuhan, China
- Department of pig disease prevention and control, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Xian Lin, ; Meilin Jin,
| |
Collapse
|
10
|
African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. J Virol 2022; 96:e0094422. [PMID: 35972295 PMCID: PMC9472647 DOI: 10.1128/jvi.00944-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal hemorrhagic disease in domestic pigs and wild boars that has significant economic consequences for the pig industry. The type I interferon (IFN) signaling pathway is a pivotal component of the innate antiviral response, and ASFV has evolved multiple mechanisms to antagonize this pathway and facilitate infection. Here, we reported a novel function of ASFV pI215L in inhibiting type I IFN signaling. Our results showed that ASFV pI215L inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs) by triggering interferon regulatory factor 9 (IRF9) degradation. Additionally, we found that catalytically inactive pI215L mutations retained the ability to block type I IFN signaling, indicating that this only known viral E2 ubiquitin-conjugating enzyme mediates IFR9 degradation in a ubiquitin-conjugating activity-independent manner. By coimmunoprecipitation, confocal immunofluorescence, and subcellular fractionation approaches, we demonstrated that pI215L interacted with IRF9 and impaired the formation and nuclear translocation of IFN-stimulated gene factor 3 (ISGF3). Moreover, further mechanism studies supported that pI215L induced IRF9 degradation through the autophagy-lysosome pathway in both pI215L-overexpressed and ASFV-infected cells. These findings reveal a new immune evasion strategy evolved by ASFV in which pI215L acts to degrade host IRF9 via the autophagic pathway, thus inhibiting the type I IFN signaling and counteracting the host innate immune response. IMPORTANCE African swine fever virus (ASFV) causes a highly contagious and lethal disease in pigs and wild boars that is currently present in many countries, severely affecting the global pig industry. Despite extensive research, effective vaccines and antiviral strategies are still lacking, and many fundamental questions regarding the molecular mechanisms underlying host innate immunity escape remain unclear. In this study, we identified ASFV pI215L, the only known viral E2 ubiquitin-conjugating enzyme, which is involved in antagonizing the type I interferon signaling. Mechanistically, pI215L interacted with interferon regulatory factor 9 for autophagic degradation, and this degradation was independent of its ubiquitin-conjugating activity. These results increase the current knowledge regarding ASFV evasion of innate immunity, which may instruct future research on antiviral strategies and dissection of ASFV pathogenesis.
Collapse
|
11
|
Ramirez-Medina E, Vuono EA, Pruitt S, Rai A, Espinoza N, Valladares A, Silva E, Velazquez-Salinas L, Borca MV, Gladue DP. Deletion of African Swine Fever Virus Histone-like Protein, A104R from the Georgia Isolate Drastically Reduces Virus Virulence in Domestic Pigs. Viruses 2022; 14:v14051112. [PMID: 35632853 PMCID: PMC9146580 DOI: 10.3390/v14051112] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Elizabeth A. Vuono
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Department of Pathobiology and Population Medicine, Mississippi State University, P.O. Box 6100, Starkville, MS 39762, USA
| | - Sarah Pruitt
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Correspondence: (M.V.B.); (D.P.G.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (E.R.-M.); (E.A.V.); (S.P.); (A.R.); (N.E.); (A.V.); (E.S.); (L.V.-S.)
- Correspondence: (M.V.B.); (D.P.G.)
| |
Collapse
|
12
|
Jia R, Zhang G, Bai Y, Liu H, Chen Y, Ding P, Zhou J, Feng H, Li M, Tian Y, Wang A. Identification of Linear B Cell Epitopes on CD2V Protein of African Swine Fever Virus by Monoclonal Antibodies. Microbiol Spectr 2022; 10:e0105221. [PMID: 35311572 PMCID: PMC9045250 DOI: 10.1128/spectrum.01052-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
The CD2-like (CD2V) protein is a crucial antigen of African swine fever virus (ASFV). CD2V interacts with the cellular AP-1 protein, participates in intracellular transport of virus, and induces neutralizing antibodies to partly protect swine from virus attack. In this study, a specific CD2V dimeric protein was designed to enhance antigenicity and immunogenicity, expressed in a Bac-to-Bac baculovirus expression vector system and purified by Ni-affinity chromatography. After animal immunization, five monoclonal antibodies (mAbs) (7E12, 22B3, 18A3, 13G11, and 43C2) against CD2V were developed. The variable regions of heavy chains and light chains of the mAbs were sequenced to prove that the five mAbs differed from one another. The mAbs of CD2V could combine with ASFV by immunoperoxidase monolayer assay (IPMA). B cell epitopes of CD2V were screened using the five mAbs by indirect enzyme-linked immunosorbent assay (ELISA) and Dot-ELISA. Therefore, three B cell epitopes (147FVKYT151, 157EYNWN161, and 195SSNY198) were identified. This is the first time that mAbs of the ASFV CD2V protein have been developed and the sequencing of heavy chains and light chains of mAbs has been completed. Linear B cell epitopes, which were core targets of immunoprotection of the CD2V protein, were identified by mAbs for the first time. This study provides efficient epitopes for the development of ASFV subunit vaccines. IMPORTANCE The ASFV CD2V protein is a crucial antigen on the outer envelopes of virus particles. A modified ASFV CD2V dimeric protein was expressed in the Bac-to-Bac baculovirus expression vector system. Five monoclonal antibodies (mAbs) against CD2V were developed, sequenced, and applied to identify CD2V protein B cell epitopes. Three B cell epitopes, 147FVKYT151, 157EYNWN161, and 195SSNY198, were identified. This is the first time CD2V mAbs have been developed, the sequencing of heavy chains and light chains of CD2V mAbs have been completed, and CD2V B cell epitopes have been identified by using scanning peptide method and bioinformatics methods.
Collapse
Affiliation(s)
- Rui Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Peking University, Beijing, China
- Longhu Modern Immunity Labrotary, Zhengzhou, Henan, China
| | - Yilin Bai
- Northwest Agriculture Forestry University, Yanglin, Shanxi, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Feng
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Mingyang Li
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| | - Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Zhongze Biological Engineering Co. Ltd., Zhengzhou, Henan, China
| |
Collapse
|
13
|
Geballa-Koukoulas K, La Scola B, Blanc G, Andreani J. Diversity of Giant Viruses Infecting Vermamoeba vermiformis. Front Microbiol 2022; 13:808499. [PMID: 35602053 PMCID: PMC9116030 DOI: 10.3389/fmicb.2022.808499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of Acanthamoeba polyphaga mimivirus in 2003 using the free-living amoeba Acanthamoeba polyphaga caused a paradigm shift in the virology field. Twelve years later, using another amoeba as a host, i.e., Vermamoeba vermiformis, novel isolates of giant viruses have been discovered. This amoeba–virus relationship led scientists to study the evolution of giant viruses and explore the origins of eukaryotes. The purpose of this article is to review all the giant viruses that have been isolated from Vermamoeba vermiformis, compare their genomic features, and report the influence of these viruses on the cell cycle of their amoebal host. To date, viruses putatively belonging to eight different viral taxa have been described: 7 are lytic and 1 is non-lytic. The comparison of giant viruses infecting Vermamoeba vermiformis has suggested three homogenous groups according to their size, the replication time inside the host cell, and the number of encoding tRNAs. This approach is an attempt at determining the evolutionary origins and trajectories of the virus; therefore, more giant viruses infecting Vermamoeba must be discovered and studied to create a comprehensive knowledge on these intriguing biological entities.
Collapse
Affiliation(s)
- Khalil Geballa-Koukoulas
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
- *Correspondence: Khalil Geballa-Koukoulas,
| | - Bernard La Scola
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
| | - Guillaume Blanc
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Julien Andreani
- MEPHI, APHM, IRD 198, Aix Marseille University, IHU-Méditerranée Infection, Marseille, France
- Julien Andreani,
| |
Collapse
|
14
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Wang Y, Kang W, Yang W, Zhang J, Li D, Zheng H. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression: A Review. Front Immunol 2021; 12:715582. [PMID: 34552586 PMCID: PMC8450572 DOI: 10.3389/fimmu.2021.715582] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
African swine fever (ASF) is an acute, highly contagious, and deadly infectious disease. The mortality rate of the most acute and acute ASF infection is almost 100%. The World Organization for Animal Health [Office International des épizooties (OIE)] lists it as a legally reported animal disease and China lists it as class I animal epidemic. Since the first diagnosed ASF case in China on August 3, 2018, it has caused huge economic losses to animal husbandry. ASF is caused by the African swine fever virus (ASFV), which is the only member of Asfarviridae family. ASFV is and the only insect-borne DNA virus belonging to the Nucleocytoplasmic Large DNA Viruses (NCLDV) family with an icosahedral structure and an envelope. Till date, there are still no effective vaccines or antiviral drugs for the prevention or treatment of ASF. The complex viral genome and its sophisticated ability to regulate the host immune response may be the reason for the difficulty in developing an effective vaccine. This review summarizes the recent findings on ASFV structure, the molecular mechanism of ASFV infection and immunosuppression, and ASFV-encoded proteins to provide comprehensive proteomic information for basic research on ASFV. In addition, it also analyzes the results of previous studies and speculations on the molecular mechanism of ASFV infection, which aids the study of the mechanism of clinical pathological phenomena, and provides a possible direction for an intensive study of ASFV infection mechanism. By summarizing the findings on molecular mechanism of ASFV- regulated host cell immune response, this review provides orientations and ideas for fundamental research on ASFV and provides a theoretical basis for the development of protective vaccines against ASFV.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
16
|
Guo F, Shi Y, Yang M, Guo Y, Shen Z, Li M, Chen Y, Liang R, Yang Y, Chen H, Peng G. The structural basis of African swine fever virus core shell protein p15 binding to DNA. FASEB J 2021; 35:e21350. [PMID: 33629764 DOI: 10.1096/fj.202002145r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
African swine fever (ASF) is an acute, hemorrhagic, and highly contagious disease caused by African swine fever virus (ASFV). The mortality rate of acute infection up to 100% have posed an unprecedented challenge of the swine industry. Currently no commercial antiviral drug is available for the control and treatment of ASFV. The structural resolution of ASFV virions reveals the details of ASFV morphogenesis, providing a new perspective for the research and promotion of the development of ASFV vaccines. Although the architecture of ASFV have been solved via cryo-EM, the structural details of four of the five viral layers remain unclear (except the outer capsid). In this study, we resolved the crystal structure of the ASFV core shell protein p15. The secondary structural elements of a protomer include four α-helix structures and six antiparallel β-strands. Further analysis revealed that ASFV p15 forms disulfide-linked trimers between the Cys9 from one protomer and Cys30 from other protomer. Additionally, the nucleic acid-binding property was characterized by electrophoretic mobility shift assay. Two critical amino acid Lys10 and Lys39 have been identified which is essential to the nucleic acid-binding affinity of ASFV p15. Together, these findings may provide new insight into antiviral drug development.
Collapse
Affiliation(s)
- Fenglin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yilin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Mengxia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yixi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Rui Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Yilin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| |
Collapse
|
17
|
African Swine Fever Virus as a Difficult Opponent in the Fight for a Vaccine-Current Data. Viruses 2021; 13:v13071212. [PMID: 34201761 PMCID: PMC8310326 DOI: 10.3390/v13071212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prevention and control of African swine fever virus (ASFV) in Europe, Asia, and Africa seem to be extremely difficult in view of the ease with which it spreads, its high resistance to environmental conditions, and the many obstacles related to the introduction of effective specific immunoprophylaxis. Biological properties of ASFV indicate that the African swine fever (ASF) pandemic will continue to develop and that only the implementation of an effective and safe vaccine will ensure a reduction in the spread of ASFV. At present, vaccines against ASF are not available. The latest approaches to the ASFV vaccine’s design concentrate on the development of either modified live vaccines by targeted gene deletion from different isolates or subunit vaccines. The construction of an effective vaccine is hindered by the complex structure of the virus, the lack of an effective continuous cell line for the isolation and propagation of ASFV, unpredictable and stain-specific phenotypes after the genetic modification of ASFV, a risk of reversion to virulence, and our current inability to differentiate infected animals from vaccinated ones. Moreover, the design of vaccines intended for wild boars and oral administration is desirable. Despite several obstacles, the design of a safe and effective vaccine against ASFV seems to be achievable.
Collapse
|