1
|
Fang L, Chen M, Zhu S, Zhang W, Yan D, Li X, Huang S, Li C, Guo X, Zeng H, Ke B, Li H, Xu W, Ke C, Deng X, Zhang Y, Zheng H. A comparative study on environmental surveillance of enterovirus: Using a two-phase separation method and a filtration method with a mixed cellulose ester (MCE) membrane. BIOSAFETY AND HEALTH 2023; 5:174-180. [PMID: 40078513 PMCID: PMC11894982 DOI: 10.1016/j.bsheal.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 03/14/2025] Open
Abstract
This study aimed to compare the sensitivity of two-phase separation and the filtration method using a mixed cellulose ester (MCE) membrane to detect enteroviruses in sewage samples. From December 2015 to July 2016, four domestic sewage samples (1 L/sample) were collected monthly from the Guangzhou Liede Sewage Treatment Plant, and each sewage sample was divided into two aliquots (500 mL). The sewage sample was concentrated using the two-phase separation and the filtration method using an MCE membrane, and the treated solutions were inoculated into cells for enterovirus isolation. Polymerase chain reaction amplification, VP1 sequencing, and enterovirus molecular typing were performed on the positive isolates. The detection rates of poliovirus (PV) and non-polio enterovirus (NPEV) obtained using the filtration method using an MCE membrane were higher than those using the two-phase separation method. McNemar's test showed that the detection rates of PV, NPEV, type 1 Sabin-like (SL1), type 2 Sabin-like (SL2), and type 3 Sabin-like (SL3) strain were not statistically significant (P > 0.05). In Guangdong Province, China, the detection rates for PV and NPEV were 53.13% and 62.50% (20/32), respectively. Twenty-seven PVs were isolated, three highly variable strains of the type 1 vaccine, with seven nucleotide substitutions in the VP1 region, compared with the type 1 Sabin strains. Eighty-seven strains of NPEV were isolated and nine serotypes were identified, among which coxsackievirus B3 (CVB3), echovirus 6(E6), and echovirus 11(E11) were the dominant strains. The filtration method using an MCE membrane is more sensitive than two-phase separation and can be used as a robust, sensitive, and cost-effective method to isolate enteroviruses from sewage.
Collapse
Affiliation(s)
- Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Meizhong Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaolei Li
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shufen Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Caixia Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Xue Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Hanri Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Xiaoling Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangzhou 511430, China
| |
Collapse
|
2
|
Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses 2022; 14:v14102257. [PMID: 36298811 PMCID: PMC9607631 DOI: 10.3390/v14102257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Ficus rubiginosa plant extract showed antimicrobial activity, but no evidence concerning its antiviral properties was reported. The antiviral activity of the methanolic extract (MeOH) and its n-hexane (H) and ethyl acetate (EA) fractions against Herpes simplex virus-1 (HSV-1), Human coronavirus (HCoV) -229E, and Poliovirus-1 (PV-1) was investigated in the different phases of viral infection in the VERO CCL-81 cell line. To confirm the antiviral efficacy, a qPCR was conducted. The recorded cytotoxic concentration 50% was 513.1, 298.6, and 56.45 µg/mL for MeOH, H, and EA, respectively, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay after 72 h of treatment. The Ficus rubiginosa leaf extract inhibited the replication of HSV-1 in the early stages of infection, showing a complete inhibition up to 0.62, 0.31, and 1.25 µg/mL. Against HCoV-229E, a total inhibition up to 1.25 µg/mL for MeOH and H as well as 5 µg/mL for EA was observed. Otherwise, no activity was recorded against PV-1. The leaf extract could act directly on the viral envelope, destructuring the lipid membrane and/or directly blocking the enriched proteins on the viral surface. The verified gene inhibition suggested that the treatments with M, H, and EA impaired HSV-1 and HCoV-229E replication, with a greater antiviral efficiency against HSV-1 compared to HCoV-229E, possibly due to a greater affinity of Ficus rubiginosa towards membrane glycoproteins and/or the different lipid envelopes.
Collapse
|
3
|
Brouwer AF, Eisenberg MC, Shulman LM, Famulare M, Koopman JS, Kroiss SJ, Hindiyeh M, Manor Y, Grotto I, Eisenberg JNS. The role of time-varying viral shedding in modelling environmental surveillance for public health: revisiting the 2013 poliovirus outbreak in Israel. J R Soc Interface 2022; 19:20220006. [PMID: 35582812 PMCID: PMC9114981 DOI: 10.1098/rsif.2022.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Environmental pathogen surveillance is a sensitive tool that can detect early-stage outbreaks, and it is being used to track poliovirus and other pathogens. However, interpretation of longitudinal environmental surveillance signals is difficult because the relationship between infection incidence and viral load in wastewater depends on time-varying shedding intensity. We developed a mathematical model of time-varying poliovirus shedding intensity consistent with expert opinion across a range of immunization states. Incorporating this shedding model into an infectious disease transmission model, we analysed quantitative, polymerase chain reaction data from seven sites during the 2013 Israeli poliovirus outbreak. Compared to a constant shedding model, our time-varying shedding model estimated a slower peak (four weeks later), with more of the population reached by a vaccination campaign before infection and a lower cumulative incidence. We also estimated the population shed virus for an average of 29 days (95% CI 28-31), longer than expert opinion had suggested for a population that was purported to have received three or more inactivated polio vaccine (IPV) doses. One explanation is that IPV may not substantially affect shedding duration. Using realistic models of time-varying shedding coupled with longitudinal environmental surveillance may improve our understanding of outbreak dynamics of poliovirus, SARS-CoV-2, or other pathogens.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Lester M. Shulman
- Central Virology Laboratory, Chaim Sheba Medical Center, Tel-Hashomer, Israel
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - James S. Koopman
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Musa Hindiyeh
- Central Virology Laboratory, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Yossi Manor
- Central Virology Laboratory, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Itamar Grotto
- Ministry of Health, Jerusalem, Israel
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|