1
|
Trivadila T, Iswantini D, Rahminiwati M, Rafi M, Salsabila AP, Sianipar RNR, Indariani S, Murni A. Herbal Immunostimulants and Their Phytochemicals: Exploring Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri. PLANTS (BASEL, SWITZERLAND) 2025; 14:897. [PMID: 40265854 PMCID: PMC11945065 DOI: 10.3390/plants14060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
The rising prevalence of infectious diseases and immune-related disorders underscores the need for effective and accessible therapeutic solutions. Herbal immunostimulants derived from medicinal plants offer promising alternatives, enhancing immune responses with lower toxicity and fewer side effects than synthetic drugs. This review explores the immunostimulatory potential of Morinda citrifolia, Echinacea purpurea, and Phyllanthus niruri, focusing on their bioactive compounds, mechanisms of action, and therapeutic relevance. These plants modulate innate and adaptive immune responses by activating macrophages, dendritic cells, and lymphocytes while regulating cytokine production to maintain immune homeostasis. Their immunomodulatory effects are linked to key signaling pathways, including NF-κB, MAPK, and JAK/STAT. In vitro and in vivo studies highlight their potential to strengthen immune responses and control inflammation, making them promising candidates for managing infectious and immune-related diseases. However, further research is needed to standardize formulations, determine optimal dosages, and validate safety and efficacy in clinical settings. Addressing these gaps will support the integration of herbal immunostimulants into evidence-based healthcare as sustainable and accessible immune-enhancing strategies.
Collapse
Affiliation(s)
- Trivadila Trivadila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Dyah Iswantini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Min Rahminiwati
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor 16680, West Java, Indonesia
| | - Mohamad Rafi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Adisa Putri Salsabila
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Rut Novalia Rahmawati Sianipar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, West Java, Indonesia; (T.T.); (M.R.); (A.P.S.); (R.N.R.S.)
| | - Susi Indariani
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, West Java, Indonesia; (M.R.); (S.I.); (A.M.)
| |
Collapse
|
2
|
Peng Y, Tao T, Yu NW, Xu C, Chen C. Identification of circulating Tfh/Th subsets as a biomarker of developed hospital-acquired pneumonia. Front Immunol 2025; 16:1513939. [PMID: 39911385 PMCID: PMC11794524 DOI: 10.3389/fimmu.2025.1513939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Background This study aimed to explore the possible value of follicular helper T (Tfh) cells in hospital-acquired pneumonia (HAP). Methods Flow cytometry was used to measure circulating Tfh and helper T cell (Th) cells in 62 HAP patients and 16 healthy individuals. HAP patients were further categorized into uncontrolled and controlled groups, in accordance with relevant guidelines. Subgroup analyses were additionally conducted based on the pathogen and the presence of bloodstream infections (BSIs) and the incidence of septic shock. Kaplan-Meier survival analysis and ROC analysis were performed to estimate the prognostic value of the combination of Tfh/Th ratios and PCT levels. Results The Tfh/Th ratio was notably higher in uncontrolled HAP patients than in controls (P<0.05). Specifically, either the Klebsiella pneumoniae (K.p) -positive HAP or BSIs subgroups or septic shock subgroups showed significantly increased Tfh/Th ratios (P<0.05). PCT level in BSIs and septic shock subgroups was significantly increased. However, there were no significant differences in PCT level between K.p-infected and non-K.p-infected patients. So, the Tfh/Th ratio is a good supplement to PCT for distinguishing between the K.p and non-K.p groups. The Tfh/Th ratio also demonstrated a strong correlation with procalcitonin (PCT) levels (P<0.05). Accordingly, the combination of Tfh/Th and PCT could serve as a more effective predictive marker for HAP deterioration and survival prediction. HAP patients with a high Tfh/Th ratio along with high PCT levels had a lower 28-day survival rate. Conclusion The circulating Tfh/Th ratio, instrumental in gauging the severity of patients with HAP, could be employed as a prognostic biomarker for HAP.
Collapse
Affiliation(s)
- Yuan Peng
- Intensive Care Unit, The First People’ ‘s Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Tao Tao
- Intensive Care Unit, The First People’ ‘s Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Ni-Wen Yu
- Respiratory Department, The First People’ ‘s Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Chenyang Xu
- Intensive Care Unit, The First People’ ‘s Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Cheng Chen
- Respiratory Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Zheng Y, Zhang Q, Zhou X, Yao L, Zhu Q, Fu Z. Altered levels of cytokine, T- and B-lymphocytes, and PD-1 expression rates in drug-naïve schizophrenia patients with acute phase. Sci Rep 2023; 13:21711. [PMID: 38066312 PMCID: PMC10709554 DOI: 10.1038/s41598-023-49206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Many studies have investigated the changes of immune cells and proinflammatory cytokines in patients with acute schizophrenia, but few studies have investigated the functional phenotypes of immune cells and the expression rate of programmed cell death protein 1 (PD-1)/ programmed cell death-Ligand 1 (PD-L1). The aim of this study was to investigate the extent of immune cells activation, PD-1/PD-L1 expressions, and altered cytokine levels in drug-naïve schizophrenia patients with acute-phase. 23 drug-naïve schizophrenia patients in acute-phase and 23 healthy individuals were enrolled in this study as experimental and control groups, separately. Socio-demographic information including gender, age, duration of illness, and smoking status was collected for each subject. Beckman DXFLEX triple laser thirteen-color flow cytometer and self-contained software CytoFLEX flow cytometric analysis software were used to detect the expressions of PD-1/PD-L1 on CD4+/CD8+ T lymphocytes, B lymphocytes, monocytes and NK cells. BD Bioscience was used to examine the levels of cytokines including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, Interleukin (IL)-2, IL-4, IL-6, and IL-10. Drug-naïve schizophrenia patients in acute-phase had higher levels of peripheral blood CD4+ T lymphocytes and B lymphocytes, higher PD-1 expression in B lymphocytes, and lower levels of CD8+ T lymphocytes. In addition, IL-6 levels of peripheral blood were higher in schizophrenia patients (all P < 0.05). Significant immune stress was present in schizophrenia patients with acute-phase.
Collapse
Affiliation(s)
- Yali Zheng
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Qi Zhang
- Hangzhou Normal University, Hangzhou, China
| | - Xianqin Zhou
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Linjuan Yao
- Hangzhou Di'an Medical Laboratory Center Co., Ltd, Hangzhou, China
| | | | | |
Collapse
|
4
|
Zhang X, Zhou Z. The Mechanism of bnAb Production and Its Application in Mutable Virus Broad-Spectrum Vaccines: Inspiration from HIV-1 Broad Neutralization Research. Vaccines (Basel) 2023; 11:1143. [PMID: 37514959 PMCID: PMC10384589 DOI: 10.3390/vaccines11071143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Elite controllers among HIV-1-infected individuals have demonstrated a stronger ability to control the viral load in their bodies. Scientists have isolated antibodies with strong neutralizing ability from these individuals, which can neutralize HIV-1 variations; these are known as broadly neutralizing antibodies. The nucleic acid of some viruses will constantly mutate during replication (such as SARS-CoV-2), which will reduce the protective ability of the corresponding vaccines. The immune escape caused by this mutation is the most severe challenge faced by humans in the battle against the virus. Therefore, developing broad-spectrum vaccines that can induce broadly neutralizing antibodies against various viruses and their mutated strains is the best way to combat virus mutations. Exploring the mechanism by which the human immune system produces broadly neutralizing antibodies and its induction strategies is crucial in the design process of broad-spectrum vaccines.
Collapse
Affiliation(s)
- Xinyu Zhang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Thawornpan P, Malee C, Kochayoo P, Wangriatisak K, Leepiyasakulchai C, Ntumngia FB, De SL, Adams JH, Chootong P. Characterization of Duffy Binding Protein II-specific CD4 +T cell responses in Plasmodium vivax patients. Sci Rep 2023; 13:7741. [PMID: 37173361 PMCID: PMC10177721 DOI: 10.1038/s41598-023-34903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
Plasmodium vivax Duffy Binding Protein region II (PvDBPII) is a leading vaccine candidate against blood-stage vivax malaria. Anti-PvDBPII antibodies potentially block parasite invasion by inhibition of erythrocyte binding. However, knowledge of PvDBPII-specific T cell responses is limited. Here, to assess the responses of PvDBPII-specific CD4+T cells in natural P. vivax infection, three cross-sectional studies were conducted in recovered subjects. In silico analysis was used for potential T cell epitope prediction and selection. PBMCs from P. vivax subjects were stimulated with selected peptides and examined for cytokine production by ELISPOT or intracellular cytokine staining. Six dominant T cell epitopes were identified. Peptide-driven T cell responses showed effector memory CD4+T cell phenotype, secreting both IFN-γ and TNF-α cytokines. Single amino acid substitutions in three T cell epitopes altered levels of IFN-γ memory T cell responses. Seropositivity of anti-PvDBPII antibodies were detected during acute malaria (62%) and persisted up to 12 months (11%) following P. vivax infection. Further correlation analysis showed four out of eighteen subjects had positive antibody and CD4+T cell responses to PvDBPII. Altogether, PvDBPII-specific CD4+T cells were developed in natural P. vivax infections. Data on their antigenicity could facilitate development of an efficacious vivax malaria vaccine.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chayapat Malee
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Piyawan Kochayoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Francis B Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Silva BR, Monteiro FR, Cezário K, do Amaral JB, Paixão V, Almeida EB, dos Santos CAF, Amirato GR, Oliveira DBL, Durigon EL, Aguiar AS, Vieira RP, dos Santos JDMB, Furtado GE, França CN, Shio MT, Bachi ALL. Older Adults Who Maintained a Regular Physical Exercise Routine before the Pandemic Show Better Immune Response to Vaccination for COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1939. [PMID: 36767315 PMCID: PMC9915291 DOI: 10.3390/ijerph20031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In this study, we aimed to investigate the specific-antibody response to the COVID-19 vaccination and the immunophenotyping of T cells in older adults who were engaged or not in an exercise training program before the pandemic. METHODS Ninety-three aged individuals (aged between 60 and 85 years) were separated into 3 groups: practitioners of physical exercise vaccinated with CoronaVac (PE-Co, n = 46), or vaccinated with ChadOx-1 (PE-Ch, n = 23), and non-practitioners vaccinated with ChadOx-1 (NPE-Ch, n = 24). Blood samples were collected before (pre) and 30 days after vaccination with the second vaccine dose. RESULTS Higher IgG levels and immunogenicity were found in the PE-Ch and NPE-Ch groups, whereas increased IgA levels were found only in the PE-Ch group post-vaccination. The PE-Co group showed a positive correlation between the IgA and IgG values, and lower IgG levels post-vaccination were associated with age. Significant alterations in the percentage of naive (CD28+CD57-), double-positive (CD28+CD57+), and senescent (CD28-CD57+) CD4+ T and CD8+ T cells were found post-vaccination, particularly in the PE-Ch group. CONCLUSIONS The volunteers vaccinated with the ChadOx-1 presented not only a better antibody response but also a significant modulation in the percentage of T cell profiles, mainly in the previously exercised group.
Collapse
Affiliation(s)
- Brenda Rodrigues Silva
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | - Kizzy Cezário
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Vitória Paixão
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Ewin Barbosa Almeida
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Carlos André Freitas dos Santos
- Discipline of Geriatrics and Gerontology, Department of Medicine, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo 04020-050, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Gislene Rocha Amirato
- Mane Garrincha Sports Education Center, Sports Department of the Municipality of Sao Paulo (SEME), São Paulo 04039-034, Brazil
| | - Danielle Bruna Leal Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-060, Brazil
| | - Andressa Simões Aguiar
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-060, Brazil
- Infection Control Service, São Luiz Gonzaga Hospital of Santa Casa de Misericordia of São Paulo, São Paulo 02276-140, Brazil
| | - Rodolfo P. Vieira
- Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Universidade Evangélica de Goiás (Unievangelica), Av Universitária km 3,5, Anápolis-Go 75083-515, Brazil
| | | | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - André Luis Lacerda Bachi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| |
Collapse
|
7
|
Ma C, Liu H, Yang S, Li H, Liao X, Kang Y. The emerging roles and therapeutic potential of B cells in sepsis. Front Pharmacol 2022; 13:1034667. [PMID: 36425582 PMCID: PMC9679374 DOI: 10.3389/fphar.2022.1034667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening syndrome caused by anomalous host response to infection. The pathogenesis of sepsis is complex, and immune dysfunction is the central link in its occurrence and development. The sepsis immune response is not a local and transient process but a complex and continuous process involving all major cell types of innate and adaptive immunity. B cells are traditionally studied for their ability to produce antibodies in the context of mediating humoral immunity. However, over the past few years, B cells have been increasingly recognized as key modulators of adaptive and innate immunity, and they can participate in immune responses by presenting antigens, producing cytokines, and modulating other immune cells. Recently, increasing evidence links B-cell dysfunction to mechanisms of immune derangement in sepsis, which has drawn attention to the powerful properties of this unique immune cell type in sepsis. Here, we reviewed the dynamic alterations of B cells and their novel roles in animal models and patients with sepsis, and provided new perspectives for therapeutic strategies targeting B cells in sepsis.
Collapse
Affiliation(s)
- Chengyong Ma
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Chen S, Guan F, Candotti F, Benlagha K, Camara NOS, Herrada AA, James LK, Lei J, Miller H, Kubo M, Ning Q, Liu C. The role of B cells in COVID-19 infection and vaccination. Front Immunol 2022; 13:988536. [PMID: 36110861 PMCID: PMC9468879 DOI: 10.3389/fimmu.2022.988536] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
B cells secrete antibodies and mediate the humoral immune response, making them extremely important in protective immunity against SARS-CoV-2, which caused the coronavirus disease 2019 (COVID-19) pandemic. In this review, we summarize the positive function and pathological response of B cells in SARS-CoV-2 infection and re-infection. Then, we structure the immunity responses that B cells mediated in peripheral tissues. Furthermore, we discuss the role of B cells during vaccination including the effectiveness of antibodies and memory B cells, viral evolution mechanisms, and future vaccine development. This review might help medical workers and researchers to have a better understanding of the interaction between B cells and SARS-CoV-2 and broaden their vision for future investigations.
Collapse
Affiliation(s)
- Shiru Chen
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
- Department of Internal Medicine, The Division of Gastroenterology and Hepatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andres A. Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, Talca, Chile
| | - Louisa K. James
- Centre for Immunobiology, Bizard Institute, Queen Mary University of London, London, United Kingdom
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), Rikagaku Kenkyusho, Institute of Physical and Chemical Research (RIKEN) Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, China
| |
Collapse
|
9
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
10
|
Braud VM, Meghraoui-Kheddar A, Elaldi R, Petti L, Germain C, Anjuère F. LLT1-CD161 Interaction in Cancer: Promises and Challenges. Front Immunol 2022; 13:847576. [PMID: 35185935 PMCID: PMC8854185 DOI: 10.3389/fimmu.2022.847576] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The success of immune checkpoint therapy in cancer has changed our way of thinking, promoting the design of future cancer treatments that places the immune system at the center stage. The knowledge gained on immune regulation and tolerance helped the identification of promising new clinical immune targets. Among them, the lectin-like transcript 1 (LLT1) is the ligand of CD161 (NKR-P1A) receptor expressed on natural killer cells and T cells. LLT1/CD161 interaction modulates immune responses but the exact nature of the signals delivered is still partially resolved. Investigation on the role of LLT1/CD161 interaction has been hampered by the lack of functional homologues in animal models. Also, some studies have been misled by the use of non-specific reagents. Recent studies and meta-analyses of single cell data are bringing new insights into the function of LLT1 and CD161 in human pathology and notably in cancer. The advances made on the characterization of the tumor microenvironment prompt us to integrate LLT1/CD161 interaction into the equation. This review recapitulates the key findings on the expression profile of LLT1 and CD161, their regulation, the role of their interaction in cancer development, and the relevance of targeting LLT1/CD161 interaction.
Collapse
Affiliation(s)
- Veronique M. Braud
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Veronique M. Braud,
| | - Aïda Meghraoui-Kheddar
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Roxane Elaldi
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Luciana Petti
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Fabienne Anjuère
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|