1
|
Chakraborty C, Lo YH, Bhattacharya M, Das A, Wen ZH. Looking beyond the origin of SARS-CoV-2: Significant strategic aspects during the five-year journey of COVID-19 vaccine development. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102527. [PMID: 40291378 PMCID: PMC12032352 DOI: 10.1016/j.omtn.2025.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
It has been five years since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we are also approaching the five-year mark of the COVID-19 pandemic. The vaccine is a significant weapon in combating infectious diseases like SARS-CoV-2. Several vaccines were developed against SARS-CoV-2, and they demonstrated efficacy and safety during these five years. The rapid development of multiple next-generation vaccine candidates in different platforms with very little time is the success story of the vaccine development endeavor. This remarkable success of rapid vaccine development is a new paradigm for fast vaccine development that might help develop infectious diseases and fight against the pandemic. With the completion of five years since the beginning of SARS-CoV-2 origin, we are looking back on the five years and reviewing the milestones, vaccine platforms, animal models, clinical trials, successful collaborations, vaccine safety, real-world effectiveness, and challenges. Lessons learned during these five years will help us respond to public health emergencies and to fight the battle against future pandemics.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Armed Forces General Hospital, Kaohsiung 81342, Taiwan
- Department of Nursing, Meiho University, Neipu Township, Pingtung County 91200, Taiwan
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020, India
| | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, #70 Lien-Hai Road, Kaohsiung 804201, Taiwan
- National Museum of Marine Biology & Aquarium, # 2 Houwan Road, Checheng, Pingtung 94450, Taiwan
| |
Collapse
|
2
|
Neto TAP, Sidney J, Grifoni A, Sette A. Correlative CD4 and CD8 T-cell immunodominance in humans and mice: Implications for preclinical testing. Cell Mol Immunol 2023; 20:1328-1338. [PMID: 37726420 PMCID: PMC10616275 DOI: 10.1038/s41423-023-01083-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Antigen-specific T-cell recognition is restricted by Major Histocompatibility Complex (MHC) molecules, and differences between CD4 and CD8 immunogenicity in humans and animal species used in preclinical vaccine testing are yet to be fully understood. In this study, we addressed this matter by analyzing experimentally identified epitopes based on published data curated in the Immune Epitopes DataBase (IEDB) database. We first analyzed SARS-CoV-2 spike (S) and nucleoprotein (N), which are two common targets of the immune response and well studied in both human and mouse systems. We observed a weak but statistically significant correlation between human and H-2b mouse T-cell responses (CD8 S specific (r = 0.206, p = 1.37 × 10-13); CD4 S specific (r = 0.118, p = 2.63 × 10-5) and N specific (r = 0.179, p = 2.55 × 10-4)). Due to intrinsic differences in MHC molecules across species, we also investigated the association between the immunodominance of common Human Leukocyte Antigen (HLA) alleles for which HLA transgenic mice are available, namely, A*02:01, B*07:02, DRB1*01:01, and DRB1*04:01, and found higher significant correlations for both CD8 and CD4 (maximum r = 0.702, p = 1.36 × 10-31 and r = 0.594, p = 3.04-122, respectively). Our results further indicated that some regions are commonly immunogenic between humans and mice (either H-2b or HLA transgenic) but that others are human specific. Finally, we noted a significant correlation between CD8 and CD4 S- (r = 0.258, p = 7.33 × 1021) and N-specific (r = 0.369, p = 2.43 × 1014) responses, suggesting that discrete protein subregions can be simultaneously recognized by T cells. These findings were confirmed in other viral systems, providing general guidance for the use of murine models to test T-cell immunogenicity of viral antigens destined for human use.
Collapse
Affiliation(s)
- Tertuliano Alves Pereira Neto
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Han Q, Wang S, Wang Z, Zhang C, Wang X, Feng N, Wang T, Zhao Y, Chi H, Yan F, Xia X. Nanobodies with cross-neutralizing activity provide prominent therapeutic efficacy in mild and severe COVID-19 rodent models. Virol Sin 2023; 38:787-800. [PMID: 37423308 PMCID: PMC10590698 DOI: 10.1016/j.virs.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
The weakened protective efficacy of COVID-19 vaccines and antibodies caused by SARS-CoV-2 variants presents a global health emergency, which underscores the urgent need for universal therapeutic antibody intervention for clinical patients. Here, we screened three alpacas-derived nanobodies (Nbs) with neutralizing activity from twenty RBD-specific Nbs. The three Nbs were fused with the Fc domain of human IgG, namely aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc, which could specifically bind RBD protein and competitively inhibit the binding of ACE2 receptor to RBD. They effectively neutralized SARS-CoV-2 pseudoviruses D614G, Alpha, Beta, Gamma, Delta, and Omicron sub-lineages BA.1, BA.2, BA.4, and BA.5 and authentic SARS-CoV-2 prototype, Delta, and Omicron BA.1, BA.2 strains. In mice-adapted COVID-19 severe model, intranasal administration of aVHH-11-Fc, aVHH-13-Fc and aVHH-14-Fc effectively protected mice from lethal challenges and reduced viral loads in both the upper and lower respiratory tracts. In the COVID-19 mild model, aVHH-13-Fc, which represents the optimal neutralizing activity among the above three Nbs, effectively protected hamsters from the challenge of SARS-CoV-2 prototype, Delta, Omicron BA.1 and BA.2 by significantly reducing viral replication and pathological alterations in the lungs. In structural modeling of aVHH-13 and RBD, aVHH-13 binds to the receptor-binding motif region of RBD and interacts with some highly conserved epitopes. Taken together, our study illustrated that alpaca-derived Nbs offered a therapeutic countermeasure against SARS-CoV-2, including those Delta and Omicron variants which have evolved into global pandemic strains.
Collapse
Affiliation(s)
- Qiuxue Han
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China.
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Xianzhu Xia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 132122, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Sayedahmed EE, Araújo MV, Silva-Pereira TT, Chothe SK, Elkashif A, Alhashimi M, Wang WC, Santos AP, Nair MS, Gontu A, Nissly R, Francisco de Souza Filho A, Tavares MS, Ayupe MC, Salgado CL, Donizetti de Oliveira Candido É, Leal Oliveira DB, Durigon EL, Heinemann MB, Morais da Fonseca D, Jagannath C, Sá Guimarães AM, Kuchipudi SV, Mittal SK. Impact of an autophagy-inducing peptide on immunogenicity and protection efficacy of an adenovirus-vectored SARS-CoV-2 vaccine. Mol Ther Methods Clin Dev 2023; 30:194-207. [PMID: 37502665 PMCID: PMC10299838 DOI: 10.1016/j.omtm.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Because of continual generation of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is critical to design the next generation of vaccines to combat the threat posed by SARS-CoV-2 variants. We developed human adenovirus (HAd) vector-based vaccines (HAd-Spike/C5 and HAd-Spike) that express the whole Spike (S) protein of SARS-CoV-2 with or without autophagy-inducing peptide C5 (AIP-C5), respectively. Mice or golden Syrian hamsters immunized intranasally (i.n.) with HAd-Spike/C5 induced similar levels of S-specific humoral immune responses and significantly higher levels of S-specific cell-mediated immune (CMI) responses compared with HAd-Spike vaccinated groups. These results indicated that inclusion of AIP-C5 induced enhanced S-specific CMI responses and similar levels of virus-neutralizing titers against SARS-CoV-2 variants. To investigate the protection efficacy, golden Syrian hamsters immunized i.n. either with HAd-Spike/C5 or HAd-Spike were challenged with SARS-CoV-2. The lungs and nasal turbinates were collected 3, 5, 7, and 14 days post challenge. Significant reductions in morbidity, virus titers, and lung histopathological scores were observed in immunized groups compared with the mock- or empty vector-inoculated groups. Overall, slightly better protection was seen in the HAd-Spike/C5 group compared with the HAd-Spike group.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marcelo Valdemir Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Butantan Institute, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shubhada K. Chothe
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ahmed Elkashif
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Wen-Chien Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Andrea P. Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Meera Surendran Nair
- Department of Veterinary and Biomedical Sciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Abhinay Gontu
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Ruth Nissly
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | | | - Mariana Silva Tavares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Caçador Ayupe
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ana Marcia Sá Guimarães
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Suresh V. Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Deldadeh N, Haghighat S, Omidi Z, Sarrami-Foroushani R, Ansari AM, Sanati H, Azizi A, Zayeri F, Forouzesh F, Geijtenbeek TBH, Javidi MA. Anti-cancer effect of COVID-19 vaccines in 4T1 mice models. Life Sci 2023; 325:121569. [PMID: 36907328 PMCID: PMC10007716 DOI: 10.1016/j.lfs.2023.121569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
AIMS Without any doubt, vaccination was the best choice for Coronavirus disease 2019 (COVID-19) pandemic control. According to the American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO), people with cancer or a history of cancer have a higher risk of dying from Covid-19 than ordinary people; hence, they should be considered a high-priority group for vaccination. On the other hand, the effect of the Covid-19 vaccination on cancer is not transparent enough. This study is one of the first in vivo studies that try to show the impact of Sinopharm (S) and AstraZeneca (A) vaccines on breast cancer, the most common cancer among women worldwide. MATERIALS AND METHODS Vaccination was performed with one and two doses of Sinopharm (S1/S2) or AstraZeneca (A1/A2) on the 4T1 triple-negative breast cancer (TNBC) mice model. The tumor size and body weight of mice were monitored every two days. After one month, mice were euthanized, and the existence of Tumor-infiltrating lymphocytes (TILs) and expression of the important markers in the tumor site was assessed. Metastasis in the vital organs was also investigated. KEY FINDINGS Strikingly, all of the vaccinated mice showed a decrease in tumor size and this decrease was highest after two vaccinations. Moreover, we observed more TILs in the tumor after vaccination. Vaccinated mice demonstrated a decrease in the expression of tumor markers (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, and metastasis to the vital organs. SIGNIFICANCE Our results strongly suggest that COVID-19 vaccinations decrease tumor growth and metastasis.
Collapse
Affiliation(s)
- Negar Deldadeh
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shahpar Haghighat
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Omidi
- Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Azadeh Azizi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Farid Zayeri
- Proteomics Research Center and Department of Biostatistics, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - Mohammad Amin Javidi
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Animal Models to Test SARS-CoV-2 Vaccines: Which Ones Are in Use and Future Expectations. Pathogens 2022; 12:pathogens12010020. [PMID: 36678369 PMCID: PMC9861368 DOI: 10.3390/pathogens12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Since late 2019 and early 2020, with the emergence of the COVID-19 pandemic, scientists are rushing to develop treatment and prevention methods to combat SARS-CoV-2. Among these are vaccines. In view of this, the use of animals as experimental models, both to investigate the immunopathology of the disease and to evaluate the efficacy and safety of vaccines, is mandatory. This work aims to describe, through recent scientific articles found in reliable databases, the animal models used for the in vivo testing of COVID-19 vaccines, demonstrating some possibilities of more advantageous/gold-standard models for SARS-CoV-2 vaccines. The majority of the studies use rodents and primates. Meanwhile, the most adequate model to be used as the gold standard for in vivo tests of COVID-19 vaccines is not yet conclusive. Promising options are being discussed as new tests are being carried out and new SARS-CoV-2 variants are emerging.
Collapse
|
7
|
Wang S, Zhang C, Liang B, Wang W, Feng N, Zhao Y, Wang T, Guo Z, Yan F, Yang S, Xia X. Characterization of Immune Response Diversity in Rodents Vaccinated with a Vesicular Stomatitis Virus Vectored COVID-19 Vaccine. Viruses 2022; 14:v14061127. [PMID: 35746599 PMCID: PMC9227808 DOI: 10.3390/v14061127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as the prime challenge facing public health safety since 2019. Correspondingly, coronavirus disease 2019 (COVID-19) vaccines have been developed and administered worldwide, varying in design strategies, delivery routes, immunogenicity and protective efficacy. Here, a replication-competent vesicular stomatitis virus (VSV) vectored recombinant COVID-19 vaccine was constructed and evaluated in BALB/c mice and Syrian golden hamsters. In BALB/c mice, intramuscular (i.m.) inoculation of recombinant vaccine induced significantly higher humoral immune response than that of the intranasal (i.n.) inoculation group. Analyses of cellular immunity revealed that a Th1-biased cellular immune response was induced in i.n. inoculation group while both Th1 and Th2 T cells were activated in i.m. inoculation group. In golden hamsters, i.n. inoculation of the recombinant vaccine triggered robust humoral immune response and conferred prominent protective efficacy post-SARS-CoV-2 challenge, indicating a better protective immunity in the i.n. inoculation group than that of the i.m. inoculation group. This study provides an effective i.n.-delivered recombinant COVID-19 vaccine candidate and elucidates a route-dependent manner of this vaccine candidate in two most frequently applied small animal models. Moreover, the golden hamster is presented as an economical and convenient small animal model that precisely reflects the immune response and protective efficacy induced by replication-competent COVID-19 vaccine candidates in other SARS-CoV-2 susceptible animals and human beings, especially in the exploration of i.n. immunization.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| | - Cheng Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
- College of Veterinary Medicine, Jilin University, Changchun 130028, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| | - Zhendong Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
- Correspondence: (F.Y.); (S.Y.)
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
- Correspondence: (F.Y.); (S.Y.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (S.W.); (C.Z.); (B.L.); (W.W.); (N.F.); (Y.Z.); (T.W.); (Z.G.); (X.X.)
| |
Collapse
|