1
|
Zhang D, Qi H, Zhang F. Parasitism by Entomopathogenic Fungi and Insect Host Defense Strategies. Microorganisms 2025; 13:283. [PMID: 40005650 PMCID: PMC11858285 DOI: 10.3390/microorganisms13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Entomopathogenic fungi, a group of insect pathogens, are characterized by high insecticidal efficacy and minimal environmental impact. They are commonly used as biopesticides for pest control due to their significant practical value. We here classify entomopathogenic fungi according to the process of fungal infection in hosts, changes in host behavior during infection, and mechanisms of spore transmission, and review the strategies employed by insects to resist infection, including physical barrier defenses, immune system defenses, and behavioral avoidance of fungal pathogens. This review also discusses the pathogenic mechanisms of fungi on insects and the closely linked co-evolution between fungal pathogens and insect defenses. In conclusion, a perspective on future research is provided, emphasizing the impact of insect population density and spore concentration in the environment on disease outbreaks.
Collapse
Affiliation(s)
- Dinghai Zhang
- Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Haidi Qi
- Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Feng Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishangbanna Tropical Botanic Garden, Chinese Academy of Sciences, Mengla 666303, China;
| |
Collapse
|
2
|
Rajput M, Sajid MS, Rajput NA, George DR, Usman M, Zeeshan M, Iqbal O, Bhutto B, Atiq M, Rizwan HM, Daniel IK, Sparagano OA. Entomopathogenic Fungi as Alternatives to Chemical Acaricides: Challenges, Opportunities and Prospects for Sustainable Tick Control. INSECTS 2024; 15:1017. [PMID: 39769619 PMCID: PMC11678319 DOI: 10.3390/insects15121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Entomopathogenic fungi (EPFs) can infect and kill a diverse range of arthropods, including ticks (Acari: Ixodidae) that can transmit various diseases to animals and humans. Consequently, the use of EPFs as a biocontrol method for managing tick populations has been explored as an alternative to chemical acaricides, which may have harmful effects on the environment and non-target species. This review summarizes studies conducted on EPFs for tick control between 1998 and 2024, identifying 9 different EPF species that have been used against 15 different species of ticks. One of the most well-known and widely researched EPFs used against ticks is Metarhizium anisopliae, a fungus known for its ability to infect and kill various arthropods. When applied to tick-infested areas, M. anisopliae spores attach to the tick's cuticle, germinate, and penetrate through the cuticle, leading to the eventual death of the tick due to the fungal infection. Whilst a number of studies support the potential of this and other EPF species against ticks, this review suggests that limitations to their effective use may include factors such as heat, humidity, and ultraviolet light (UV-A and UV-B). This comprehensive review aims to provide an overview of the literature on the potential of EPFs in tick control, focusing on their mode of action, previous field successes/failures, advantages, potential applications, and prospects for future practical developments.
Collapse
Affiliation(s)
- Mahvish Rajput
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.R.); (M.Z.)
| | - Muhammad Sohail Sajid
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.R.); (M.Z.)
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (N.A.R.); (M.U.); (M.A.)
| | - David Robert George
- Reader in Precision Agronomy, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Muhammad Usman
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (N.A.R.); (M.U.); (M.A.)
| | - Muhammad Zeeshan
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (M.R.); (M.Z.)
- Riphah College of Veterinary Science, Riphah International University, Raiwand Road, Lahore 54000, Pakistan
| | - Owais Iqbal
- State Key Laboratory for Conversation and Utilization of Bio-Resource in Yunnan, Yunnan Agricultural University, Kunming 650000, China;
| | - Bachal Bhutto
- Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam 70060, Pakistan;
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan; (N.A.R.); (M.U.); (M.A.)
| | - Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Science, Narowal, Sub Campus UVAS, Lahore 54000, Pakistan;
| | - Ian Kirimi Daniel
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | | |
Collapse
|
3
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
4
|
Kataki AS, Baldini F, Naorem AS. Evaluation of synergistic effect of entomopathogenic fungi Beauveria bassiana and Lecanicillium lecacii on the mosquito Culex quinquefaciatus. PLoS One 2024; 19:e0308707. [PMID: 39240894 PMCID: PMC11379303 DOI: 10.1371/journal.pone.0308707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Vector-borne diseases resulted into several cases of human morbidity and mortality over the years and among them is filariasis, caused by the mosquito Culex quinquefasciatus. Developing novel strategies for mosquito control without jeopardizing the environmental conditions has always been a topic of discussion and research. Integrated Vector Management (IVM) emphasizes a comprehensive approach and use of a range of strategies for vector control. Recent research evaluated the use of two entomopathogenic fungi; Beauveria bassiana and Lecanicillium lecanii in IVM, which can serve as potential organic insecticide for mosquito population control. However, their combined efficacy has not yet been evaluated against mosquito control in prior research and a gap of knowledge is still existing. So, this research was an attempt to bridge up the knowledge gap by (1) Assessing the combined efficacy of Beauveria bassiana and Lecanicillium lecanii on Culex quinquefasciatus (2) To investigate the sub-lethal concentration (LC50) of the combined fungal concentration and (3) To examine the post-mortem effects caused by the combined fungal concentration under Scanning Electron Microscope (SEM). The larval pathogenicity assay was performed on 4th instar C. quinquefasciatus larvae. Individual processed fungal solution of B. bassiana and L. lecanii were procured and to test the combined efficacy, the two solutions were mixed in equal proportions. To evaluate the sub-lethal concentration (LC50), different concentrations of the combined fungal solution were prepared by serial dilations. The mortality was recorded after 24 hours for each concentration. Upon treatment and evaluation, The LC50 values of B. bassiana and L. lecanii were 0.25 x 104 spores/ml and 0.12 x 104 spores/ml respectively and the combined fungal concentration was 0.06 x 103 spores/ml. This clearly indicated that the combined efficacy of the fungi is more significant. Further, SEM analysis revealed morphological deformities and extensive body perforations upon combined fungal treatment. These findings suggested that combining the two fungi can be a more effective way in controlling the population of Culex quinquefasciatus.
Collapse
Affiliation(s)
- Aditya Shankar Kataki
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Department of Zoology, Cotton University, Guwahati, Assam, India
| | - Francesco Baldini
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | | |
Collapse
|
5
|
Shahbaz M, Palaniveloo K, Tan YS, Palasuberniam P, Ilyas N, Wiart C, Seelan JSS. Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities. World J Microbiol Biotechnol 2024; 40:217. [PMID: 38806748 DOI: 10.1007/s11274-024-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Sabah, Malaysia
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
6
|
Russo A, Winkler JB, Ghirardo A, Monti MM, Pollastri S, Ruocco M, Schnitzler JP, Loreto F. Interaction with the entomopathogenic fungus Beauveria bassiana influences tomato phenome and promotes resistance to Botrytis cinerea infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1309747. [PMID: 38173923 PMCID: PMC10762804 DOI: 10.3389/fpls.2023.1309747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants are central to complex networks of multitrophic interactions. Increasing evidence suggests that beneficial microorganisms (BMs) may be used as plant biostimulants and pest biocontrol agents. We investigated whether tomato (Solanum lycopersicum) plants are thoroughly colonized by the endophytic and entomopathogenic fungus Beauveria bassiana, and how such colonization affects physiological parameters and the phenotype of plants grown under unstressed conditions or exposed to the pathogenic fungus Botrytis cinerea. As a positive control, a strain of the well-known biocontrol agent and growth inducer Trichoderma afroharzianum was used. As multitrophic interactions are often driven by (or have consequences on) volatile organic compounds (VOCs) released by plants constitutively or after induction by abiotic or biotic stresses, VOC emissions were also studied. Both B. bassiana and T. afroharzianum induced a significant but transient (one to two-day-long) reduction of stomatal conductance, which may indicate rapid activation of defensive (rejection) responses, but also limited photosynthesis. At later stages, our results demonstrated a successful and complete plant colonization by B. bassiana, which induced higher photosynthesis and lower respiration rates, improved growth of roots, stems, leaves, earlier flowering, higher number of fruits and yield in tomato plants. Beauveria bassiana also helped tomato plants fight B. cinerea, whose symptoms in leaves were almost entirely relieved with respect to control plants. Less VOCs were emitted when plants were colonized by B. bassiana or infected by B. cinerea, alone or in combination, suggesting no activation of VOC-dependent defensive mechanisms in response to both fungi.
Collapse
Affiliation(s)
- Assunta Russo
- University of Naples Federico II, Department of Agricultural Sciences, Portici, Italy
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maurilia M. Monti
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Susanna Pollastri
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Michelina Ruocco
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Francesco Loreto
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Bava R, Castagna F, Ruga S, Nucera S, Caminiti R, Serra M, Bulotta RM, Lupia C, Marrelli M, Conforti F, Statti G, Domenico B, Palma E. Plants and Their Derivatives as Promising Therapeutics for Sustainable Control of Honeybee ( Apis mellifera) Pathogens. Pathogens 2023; 12:1260. [PMID: 37887776 PMCID: PMC10610010 DOI: 10.3390/pathogens12101260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
The most important pollinator for agricultural crops is the Western honeybee (Apis mellifera). During the winter and summer seasons, diseases and stresses of various kinds endanger honeybee numbers and production, resulting in expenses for beekeepers and detrimental effects on agriculture and ecosystems. Researchers are continually in search of therapies for honeybees using the resources of microbiology, molecular biology, and chemistry to combat diseases and improve the overall health of these important pollinating insects. Among the most investigated and most promising solutions are medicinal plants and their derivatives. The health of animals and their ability to fight disease can be supported by natural products (NPs) derived from living organisms such as plants and microbes. NPs contain substances that can reduce the effects of diseases by promoting immunity or directly suppressing pathogens, and parasites. This literature review summarises the advances that the scientific community has achieved over the years regarding veterinary treatments in beekeeping through the use of NPs. Their impact on the prevention and control of honeybee diseases is investigated both in trials that have been conducted in the laboratory and field studies.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Maria Serra
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy;
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy; (M.M.); (F.C.); (G.S.)
| | - Britti Domenico
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (S.R.); (S.N.); (R.C.); (M.S.); (R.M.B.); (B.D.); (E.P.)
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FISH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| |
Collapse
|
8
|
Anwar W, Amin H, Khan HAA, Akhter A, Bashir U, Anjum T, Kalsoom R, Javed MA, Zohaib KA. Chitinase of Trichoderma longibrachiatum for control of Aphis gossypii in cotton plants. Sci Rep 2023; 13:13181. [PMID: 37580401 PMCID: PMC10425378 DOI: 10.1038/s41598-023-39965-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Chitinase-producing fungi have now engrossed attention as one of the potential agents for the control of insect pests. Entomopathogenic fungi are used in different regions of the world to control economically important insects. However, the role of fungal chitinases are not well studied in their infection mechanism to insects. In this study, Chitinase of entomopathogenic fungi Trichoderma longibrachiatum was evaluated to control Aphis gossypii. For this purpose, fungal chitinase (Chit1) gene from the genomic DNA of T. longibrachiatum were isolated, amplified and characterised. Genomic analysis of the amplified Chit1 showed that this gene has homology to family 18 of glycosyl hydrolyses. Further, Chit1 was expressed in the cotton plant for transient expression through the Geminivirus-mediated gene silencing vector derived from Cotton Leaf Crumple Virus (CLCrV). Transformed cotton plants showed greater chitinase activity than control, and they were resistant against nymphs and adults of A. gossypii. About 38.75% and 21.67% mortality of both nymphs and adults, respectively, were observed by using Chit1 of T. longibrachiatum. It is concluded that T. longibrachiatum showed promising results in controlling aphids by producing fungal chitinase in cotton plants and could be used as an effective method in the future.
Collapse
Affiliation(s)
- Waheed Anwar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Huma Amin
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Azhar Ali Khan
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Institute of Zoology, Faculty of Life Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Akhter
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Uzma Bashir
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rabia Kalsoom
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asim Javed
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Karamat Ali Zohaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Niego AGT, Rapior S, Thongklang N, Raspé O, Hyde KD, Mortimer P. Reviewing the contributions of macrofungi to forest ecosystem processes and services. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Kim DY, Maeng S, Cho SJ, Park HJ, Kim K, Lee JK, Srinivasan S. The Ascosphaera apis Infection (Chalkbrood Disease) Alters the Gut Bacteriome Composition of the Honeybee. Pathogens 2023; 12:pathogens12050734. [PMID: 37242403 DOI: 10.3390/pathogens12050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The declining honeybee populations are a significant risk to the productivity and security of agriculture worldwide. Although there are many causes of these declines, parasites are a significant one. Disease glitches in honeybees have been identified in recent years and increasing attention has been paid to addressing the issue. Between 30% and 40% of all managed honeybee colonies in the USA have perished annually over the past few years. American foulbrood (AFB) and European foulbrood (EFB) have been reported as bacterial diseases, Nosema as a protozoan disease, and Chalkbrood and Stonebrood as fungal diseases. The study aims to compare the bacterial community related to the Nosema ceranae and Ascosphaera apis infection on the gut of the honeybee and compare it with the weakly active honeybees. The Nosema-infected honeybees contain the phyla Proteobacteria as the significantly dominant bacterial phyla, similar to the weakly active honeybees. In contrast, the Ascosphaera (Chalkbrood) infected honeybee contains large amounts of Firmicutes rather than Proteobacteria.
Collapse
Affiliation(s)
- Dae Yoon Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Soohyun Maeng
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hui Jin Park
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyungsu Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea
| |
Collapse
|
11
|
Liu D, Smagghe G, Liu TX. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. J Fungi (Basel) 2023; 9:jof9050575. [PMID: 37233286 DOI: 10.3390/jof9050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Concerns regarding the ecological and health risks posed by synthetic insecticides have instigated the exploration of alternative methods for controlling insects, such as entomopathogenic fungi (EPF) as biocontrol agents. Therefore, this review discusses their use as a potential alternative to chemical insecticides and especially focuses on the two major ones, Beauveria bassiana and Metarhizium anisopliae, as examples. First, this review exemplifies how B. bassiana- and M. anisopliae-based biopesticides are used in the world. Then, we discuss the mechanism of action by which EPF interacts with insects, focusing on the penetration of the cuticle and the subsequent death of the host. The interactions between EPF and the insect microbiome, as well as the enhancement of the insect immune response, are also summarized. Finally, this review presents recent research that N-glycans may play a role in eliciting an immune response in insects, resulting in the increased expression of immune-related genes and smaller peritrophic matrix pores, reducing insect midgut permeability. Overall, this paper provides an overview of the EPF in insect control and highlights the latest developments relating to the interaction between fungi and insect immunity.
Collapse
Affiliation(s)
- Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Bava R, Castagna F, Palma E, Ceniti C, Millea M, Lupia C, Britti D, Musella V. Prevalence of Varroa destructor in Honeybee (Apis mellifera) Farms and Varroosis Control Practices in Southern Italy. Microorganisms 2023; 11:1228. [PMID: 37317203 DOI: 10.3390/microorganisms11051228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The majority of honeybee farms in industrialized countries currently base their Varroa destructor control programs on the use of acaricides in conjunction with other management practices. However, the outcomes of these practices are often misunderstood and have only been studied to a limited extent. Better yields are guaranteed by having hives with low infection levels in the spring. Therefore, it is crucial to understand which beekeeping practices can result in increased control effectiveness. This study aimed to analyze the potential effects of environmental factors and beekeeping practices on the dynamics of V. destructor population. Experimental evidence was obtained by interpolating percentage infestation data from diagnoses conducted on several apiaries in the Calabria region (Southern Italy) with data acquired from a questionnaire on pest control strategies. Data on climatic temperature during the different study periods were also taken into account. The study was conducted over two years and involved 84 Apis mellifera farms. For each apiary, the diagnosis of infestation was made on a minimum of 10 hives. In total, 840 samples of adult honeybees were analyzed in the field to determine the level of infestation. In 2020, 54.7% of the inspected apiaries tested positive for V. destructor, and in 2021, 50% tested positive, according to a study of the field test findings (taking into account a threshold of 3% in July). A significant effect of the number of treatments on parasite prevalence was found. The results showed a significant reduction in the infestation rate in apiaries that received more than two treatments each year. Furthermore, it was shown that management practices, such as drone brood removal and frequent queen replacement, have a statistically significant impact on the infestation rate. The analysis of the questionnaires revealed some critical issues. In particular, only 50% of the interviewed beekeepers diagnosed infestation on samples of adult bees, and only 69% practiced drug rotation. In conclusion, it is only possible to maintain the infestation rate at an acceptable threshold by implementing integrated pest management (IPM) programs and using good beekeeping practices (GBPs).
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Institute of Research for Food Safety & Health (IRC-FISH), Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Maurizio Millea
- ARA Calabria (Calabria Regional Breeders Association), Via Umberto Boccioni, 88046 Lamezia Terme, Italy
| | - Carmine Lupia
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Wu X, Li Z, Yang H, He X, Yan W, Zeng Z. The adverse impact on lifespan, immunity, and forage behavior of worker bees (Apis mellifera Linnaeus 1758) after exposure to flumethrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160146. [PMID: 36375554 DOI: 10.1016/j.scitotenv.2022.160146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Several pyrethroids (such as flumethrin and fluvalinate) with low toxicity to honey bees and comparable high toxicity to mites are used worldwide as acaricides. However, flumethrin has been used for a long time in colonies to control Varroa destructor and the honey bees might be exposed to flumethrin cumulatively, which could affect the health of honey bee colonies. This study evaluated the potential adverse effects of direct flumethrin exposure on worker bees under laboratory and colony conditions. Under laboratory conditions, downregulation of genes related to immune was observed when worker bees were exposed to flumethrin above 1/16 LD50; at levels above 1/8 LD50, olfactory learning was impaired, and genes related to learning memory were downregulated; and at >1/4 LD50, their lifespan was shortened. Monitoring with radio frequency identification (RFID) revealed that worker bees in a colony exposed to flumethrin above 1/8 LD50 had a shortened lifespan and reduced foraging ability. When worker bees are exposed to >1/4 LD50 of flumethrin, it can lead to excessive rest day behavior. These results indicate that applying flumethrin in colonies may pose a severe health risk to honey bees and reveal the urgent need to develop non-toxic and highly effective acaricides.
Collapse
Affiliation(s)
- Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China.
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, Jiangxi 330045, PR China
| |
Collapse
|
14
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
15
|
Phytochemical Profile of Foeniculum vulgare Subsp. piperitum Essential Oils and Evaluation of Acaricidal Efficacy against Varroa destructor in Apis mellifera by In Vitro and Semi-Field Fumigation Tests. Vet Sci 2022; 9:vetsci9120684. [PMID: 36548845 PMCID: PMC9784571 DOI: 10.3390/vetsci9120684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Varroatosis is an important parasitic disease of Apis mellifera caused by the mite Varroa destructor (V. destructor). The parasite is able to transmit numerous pathogens to honeybees which can lead to colony collapse. In recent years, the effectiveness of authorized drug products has decreased due to increasing resistance phenomena. Therefore, the search for alternatives to commercially available drugs is mandatory. In this context, essential oils (EOs) prove to be a promising choice to be studied for their known acaricide properties. In this research work, the acaricide activity of EO vapours isolated from the epigeal part (whole plant) of fennel (Foeniculum vulgare sbps. piperitum) and its three fractions (leaves, achenes and flowers) against V. destructor was evaluated. The effectiveness of fumigation was studied using two methods. The first involved prolonged exposure of mites to oil vapour for variable times. After exposure, the five mites in each replicate were placed in a Petri dish with an Apis mellifera larva. Mortality, due to chronic toxicity phenomena, was assessed after 48 h. The second method aimed to translate the results obtained from the in vitro test into a semi-field experiment. Therefore, two-level cages were set up. In the lower compartment of the cage, a material releasing oil vapours was placed; in the upper compartment, Varroa-infested honeybees were set. The results of the first method showed that the increase in mortality was directly proportional to exposure time and concentration. The whole plant returned 68% mortality at the highest concentration (2 mg/mL) and highest exposure time (48 h control), while the leaves, achenes and flowers returned 64%, 52% and 56% mortality, respectively. In the semi-field experiment, a concentration up to 20 times higher than the one used in the in vitro study was required for the whole plant to achieve a similar mite drop of >50%. The results of the study show that in vitro tests should only be used for preliminary screening of EO activity. In vitro tests should be followed by semi-field tests, which are essential to identify the threshold of toxicity to bees and the effective dose to be used in field studies.
Collapse
|
16
|
Ebeling J, Fünfhaus A, Gisder S. Special Issue: Honey Bee Pathogens and Parasites. Vet Sci 2022; 9:vetsci9100515. [PMID: 36288128 PMCID: PMC9611805 DOI: 10.3390/vetsci9100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
|
17
|
Bava R, Castagna F, Carresi C, Cardamone A, Federico G, Roncada P, Palma E, Musella V, Britti D. Comparison of Two Diagnostic Techniques for the Apis mellifera Varroatosis: Strengths, Weaknesses and Impact on the Honeybee Health. Vet Sci 2022; 9:vetsci9070354. [PMID: 35878371 PMCID: PMC9315579 DOI: 10.3390/vetsci9070354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Varroa destructor is the most dangerous pest that poses a threat to honey bee survival. In recent years, increasingly worrying phenomena of drug resistance have occurred to various active ingredients of pharmaceutical formulations used to control this parasitosis. Determining the level of infestation is essential to preventing the inappropriate use and abuse of veterinary medicines, and to choose the most appropriate time for treatment. This comparative study investigates the sensitivity and diagnostic accuracy of two field techniques for diagnosing V. destructor infestations in hives. The EasyCheck device (Véto-pharma) was used in two of its application modes, namely, the sugar roll test and carbon dioxide (CO2) injection. The experiments were conducted on 15 samples of 300 bees each taken from the same frame and checked for the presence of mites using standard and modified field techniques in both uncaged and caged queen hive conditions. The results demonstrate that the sugar roll technique is significantly more effective and safer than CO2 injection, allowing for a higher accuracy in diagnosing a V. destructor infestation. Furthermore, the evaluation of mites present on bees in brood block conditions has proven to be particularly reliable. Considering the number of mites on the filter of the device as an additional step helps to implement the diagnostic accuracy of the CO2 injection technique, however, not achieving the efficacy results of the sugar roll.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (C.C.); (E.P.)
| | - Antonio Cardamone
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
| | - Giovanni Federico
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Loc. Catona, 89135 Reggio Calabria, Italy;
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Nutramed S.c.a.r.l. Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- Correspondence: (C.C.); (E.P.)
| | - Vincenzo Musella
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (F.C.); (A.C.); (P.R.); (V.M.); (D.B.)
- Interdepartmental Center Veterinary Service for Human and Animal Health, University of Catanzaro Magna Græcia, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Green Veterinary Pharmacology for Honey Bee Welfare and Health: Origanum heracleoticum L. (Lamiaceae) Essential Oil for the Control of the Apis mellifera Varroatosis. Vet Sci 2022; 9:vetsci9030124. [PMID: 35324852 PMCID: PMC8953610 DOI: 10.3390/vetsci9030124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Varroatosis, caused by the Varroa destructor mite, is currently the most dangerous parasitic disease threatening the survival of honey bees worldwide. Its adverse effect on the welfare and health of honey bees requires the regular use of specific acaricides. This condition has led to a growing development of resistance phenomena towards the most frequently used drugs. In addition, another important aspect that should not be understated, is the toxicity and persistence of chemicals in the environment. Therefore, the identification of viable and environmentally friendly alternatives is urgently needed. In this scenario, essential oils are promising candidates. The aim of this study was to assess the contact toxicity, the fumigation efficacy and the repellent effect of Origanum heracleoticum L. essential oil (EO) against V. destructor mite. In the contact tests, each experimental replicate consisted of 15 viable adult female mites divided as follows: 5 treated with EO diluted in HPLC grade acetone, 5 treated with acetone alone (as negative control) and 5 treated with Amitraz diluted in acetone (as positive control). The EO was tested at concentrations of 0.125, 0.25, 0.5, 1 and 2 mg/mL. For each experimental replicate, mortality was manually assessed after one hour. The efficacy of EO fumigation was evaluated through prolonged exposure at different time intervals. After each exposure, the 5 mites constituting an experimental replicate were transferred to a Petri dish containing a honey bee larva and mortality was assessed after 48 h. The repellent action was investigated by implementing a directional choice test in a mandatory route. During the repellency tests the behavior of the mite (90 min after its introduction in the mandatory route) was not influenced by the EO. In contact tests, EO showed the best efficacy at 2 and 1 mg/mL concentrations, neutralizing (dead + inactivated) 90.9% and 80% of the mites, respectively. In fumigation tests, the mean mortality rate of V. destructor at maximum exposure time (90 min) was 60% and 84% at 24 and 48 h, respectively. Overall, these results demonstrate a significant efficacy of O. heracleoticum EO against V. destructor, suggesting a possible alternative use in the control of varroatosis in honey bee farms in order to improve Apis mellifera welfare and health and, consequently, the hive productions.
Collapse
|