1
|
Wang Y, Zhang T, Huang M, Zhang M, He YC. Preparation of dandelion flower extract-based polyvinyl alcohol-chitosan-dandelion-CuNPs composite gel for efficient bacteriostatic and dye adsorption. Int J Biol Macromol 2024; 281:136512. [PMID: 39406320 DOI: 10.1016/j.ijbiomac.2024.136512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
A multifunctional composite gel with efficient bacteriostatic and dye adsorption properties was prepared using polyvinyl alcohol, chitosan, and soybean isolate protein as carriers, CuNPs prepared by green reduction of dandelion extract as bacteriostatic agent, and glutaraldehyde as cross-linking agent. The composite gel showed good inhibition capacity of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa with the diameter of inhibition zone of 27.0-28.3 mm by agar diffusion method. The composite gel antibacterial rate remained above 90 % after 14 days of preparation. After 6 times reuse of composite gel in water, the antibacterial rate remained above 90 %, proving its good stability and reusability. Adding dandelion extract and CuNPs greatly improved the gel antioxidant property, acquiring free radical scavenging rate at 95.6 %. This composite gel had good biocompatibility and adsorption performance, and the maximum adsorption amount of methylene blue and methyl orange was 40.36 mg/g and 41.81 mg/g, respectively. To sum up, the green composition of composite gel has good antimicrobial performance and high dye adsorption, which holds significant promising for treating the water body pollution and protecting the environment. To build cost-effective antibacterial and dye adsorption process on a large-scale, in-depth exploration about this topic is still needed to develop.
Collapse
Affiliation(s)
- Yue Wang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Tingting Zhang
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Meizi Huang
- School of Animal Pharmacy, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China; Jiangsu ShenQi Medicine Technology Co., Ltd., Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Ming Zhang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Yu-Cai He
- School of Pharmacy & Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Bănăduc D, Simić V, Cianfaglione K, Barinova S, Afanasyev S, Öktener A, McCall G, Simić S, Curtean-Bănăduc A. Freshwater as a Sustainable Resource and Generator of Secondary Resources in the 21st Century: Stressors, Threats, Risks, Management and Protection Strategies, and Conservation Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16570. [PMID: 36554449 PMCID: PMC9779543 DOI: 10.3390/ijerph192416570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
This paper is a synthetic overview of some of the threats, risks, and integrated water management elements in freshwater ecosystems. The paper provides some discussion of human needs and water conservation issues related to freshwater systems: (1) introduction and background; (2) water basics and natural cycles; (3) freshwater roles in human cultures and civilizations; (4) water as a biosphere cornerstone; (5) climate as a hydrospheric 'game changer' from the perspective of freshwater; (6) human-induced stressors' effects on freshwater ecosystem changes (pollution, habitat fragmentation, etc.); (7) freshwater ecosystems' biological resources in the context of unsustainable exploitation/overexploitation; (8) invasive species, parasites, and diseases in freshwater systems; (9) freshwater ecosystems' vegetation; (10) the relationship between human warfare and water. All of these issues and more create an extremely complex matrix of stressors that plays a driving role in changing freshwater ecosystems both qualitatively and quantitatively, as well as their capacity to offer sustainable products and services to human societies. Only internationally integrated policies, strategies, assessment, monitoring, management, protection, and conservation initiatives can diminish and hopefully stop the long-term deterioration of Earth's freshwater resources and their associated secondary resources.
Collapse
Affiliation(s)
- Doru Bănăduc
- Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, I. Raţiu Street 5–7, 9, 550012 Sibiu, Romania
| | - Vladica Simić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
| | | | - Sophia Barinova
- Institute of Evolution, University of Haifa, Mount Carmel, 199 Abba Khoushi Avenue, Haifa 3498838, Israel
| | - Sergey Afanasyev
- Institute of Hydrobiology National Academy of Sciences of Ukraine, Prospect Geroiv Stalingradu 12, 04210 Kyiv, Ukraine
| | - Ahmet Öktener
- Ministry of Food, Agriculture and Livestock, Food Control Laboratory Directorate, Denizli 20010, Turkey
| | - Grant McCall
- Center for Human-Environmental Research (CHER), New Orleans, LA 70118, USA
| | - Snežana Simić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Angela Curtean-Bănăduc
- Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, I. Raţiu Street 5–7, 9, 550012 Sibiu, Romania
| |
Collapse
|
3
|
The Effect of R&D Input on Operating Income of Chinese Wastewater Treatment Companies—With Patent Performance as a Mediating Variable. WATER 2022. [DOI: 10.3390/w14060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Chinese government is actively promoting green and low-carbon transformation for economic and social development, especially in the wastewater treatment industry. This article uses regression analysis to study the impact of company R&D input on patent performance and company operating income for different regulatory environments and regions. Companies in the wastewater treatment industries of the Shanghai and Shenzhen stock exchanges from 2013 to 2020 are selected as research samples. The results show that there is a partial mediating effect of patent performance between company R&D input and company operating income; the stimulative effect of company R&D input is strongest in a high external-high internal environment; this stimulative effect is also more significant in the three strategic regions when compared with other regions. The findings suggest that company R&D input can promote company operating income. Thus, wastewater treatment enterprises should establish complete R&D systems to improve their innovative output capabilities. Enterprises in more developed regions should play a leading role in undertaking technological innovation. Furthermore, the government should formulate policies to improve the capacity of companies to conduct wastewater treatment and continue down the road of green development.
Collapse
|