1
|
Berríos-Rolón PJ, Cotto MC, Márquez F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. TOXICS 2025; 13:321. [PMID: 40278637 PMCID: PMC12031217 DOI: 10.3390/toxics13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This comprehensive review offers new perspectives on the distribution, sources, and ecotoxicological impacts of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems. Unlike previous reviews, this work integrates recent findings on PAH dynamics within environmental matrices and emphasizes spatiotemporal variability across geographic regions. It critically examines both anthropogenic and natural sources, as well as the physical, chemical, and biological mechanisms driving PAH transport and fate. Special attention is given to the ecotoxicological effects of PAHs on freshwater organisms, including bioaccumulation, endocrine disruption, and genotoxicity. Notably, this review identifies key knowledge gaps and proposes an interdisciplinary framework to assess ecological risk and guide effective monitoring and management strategies for the protection of freshwater ecosystems.
Collapse
Affiliation(s)
| | - María C. Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| |
Collapse
|
2
|
Bensadi L, Azzoug M, Benslimane A, Benlaribi R, Bouledouar S, Merzeg FA. Distribution, levels, sources and risk assessment of polycyclic aromatic hydrocarbons in the bottom sediments of a Mediterranean river under multiple anthropopressures (Soummam River), Algeria. MARINE POLLUTION BULLETIN 2024; 202:116416. [PMID: 38669853 DOI: 10.1016/j.marpolbul.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The Soummam River, a vital watercourse in Algeria is threatened by anthropogenic activities despite its protected wetland status. This study is the first to assess sediment pollution in the Soummam River, examining levels, compositions, sources of 16 PAHs and their effects on the environment and human health. Analysis employing Principal Component Analysis (PCA) and molecular diagnostic ratios pointed to petrogenic sources, likely stemming from petroleum leaks originating from aging pipeline and vehicles, as well as pyrogenic sources arising from vehicle exhaust and biomass combustion. Environmental and health risks were assessed through risk quotients (RQ), Sediments Quality Guidelines (SQG) and Total Lifetime Cancer Risk (TLCR). Ecological risk was found to range from moderate to high, with anticipated biological impacts, while cancer risk was deemed low. Toxicity assessment, measured by TEQ, revealed that the majority of monitoring stations exceeded safe levels. Consequently, urgent action by local authorities is warranted to implement ecosystem rehabilitation measures.
Collapse
Affiliation(s)
- Lydia Bensadi
- Université de Bejaia, Faculté de Technologie, Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération (LPMTSR), 06000 Bejaia, Algeria.
| | - Moufok Azzoug
- Université de Bejaia, Faculté de Technologie, Laboratoire des Procédés Membranaires et des Techniques de Séparation et de Récupération (LPMTSR), 06000 Bejaia, Algeria
| | - Abdelhakim Benslimane
- Université de Bejaia, Faculté de Technologie, Laboratoire Mécanique, Matériaux et Energétique, 06000 Bejaia, Algeria
| | - Rabia Benlaribi
- Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale (INCC/GN), Cheraga, Algeria
| | - Samira Bouledouar
- Université de Bejaia, Faculté de Technologie, Laboratory of Materials and Process Engineering (LTMGP), 06000 Bejaia, Algeria; Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), BP 384 Bou-Ismail, RP 42004 Tipaza, Algeria
| | - Farid Ait Merzeg
- Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), BP 384 Bou-Ismail, RP 42004 Tipaza, Algeria; Research Unit in Physico-Chemical Analyzes of Fluids and Soils (URAPC-FS), 11 Chemin, Doudou Mokhtar, Ben Aknoun, 16028 Alger, Algeria; Technical Platform for Physico-chemical Analyzes (PTAPC-Bejaia), Targa Ouzemmour, 06000 Bejaia, Algeria
| |
Collapse
|
3
|
Grmasha RA, Stenger-Kovács C, Al-Sareji OJ, Al-Juboori RA, Meiczinger M, Andredaki M, Idowu IA, Majdi HS, Hashim K, Al-Ansari N. Temporal and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in the Danube River in Hungary. Sci Rep 2024; 14:8318. [PMID: 38594356 PMCID: PMC11004153 DOI: 10.1038/s41598-024-58793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.
Collapse
Affiliation(s)
- Ruqayah Ali Grmasha
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem Utca 10, 8200, Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Csilla Stenger-Kovács
- Limnology Research Group, Center for Natural Science, University of Pannonia, Egyetem Utca 10, 8200, Veszprém, Hungary
- HUN-REN-PE Limnoecology Research Group, Egyetem Utca 10, 8200, Veszprém, Hungary
| | - Osamah J Al-Sareji
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, Aalto, PO Box 15200, 00076, Espoo, Finland
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, 8200, Veszprém, Hungary
| | - Manolia Andredaki
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Ibijoke A Idowu
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hillah, Iraq
| | - Khalid Hashim
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, 51001, Iraq.
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK.
- Dijlah University College, Baghdad, Iraq.
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, Lulea, Sweden.
| |
Collapse
|
4
|
Hoque MZ, Alqahtani A, Sankaran S, Anand D, Musa MM, Nzila A, Guerriero G, Siddiqui KS, Ahmad I. Enhanced biodegradation of phenanthrene and anthracene using a microalgal-bacterial consortium. Front Microbiol 2023; 14:1227210. [PMID: 37771703 PMCID: PMC10525690 DOI: 10.3389/fmicb.2023.1227210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are chemicals that are released into the environment during activities of the petroleum industry. The bioaccumulation, carcinogenic and mutagenic potential of PAHs necessitates the bioremediation of these contaminants. However, bioremediation of PAHs has a number of limitations including the inability of a single microbe to degrade all of the PAH fraction's environmental constituents. Therefore, a different paradigm, employing microalgal-bacterial consortium (MBC), may be used to effectively remove PAHs contaminants. In this type of interaction, the microalgae and bacteria species in the consortium work together in a way that enhances the overall performance of the MBC. Bacterial species in the consortium provide essential nutrients or growth factors by degrading toxic substances and provide these to microalgae, while the microalgae species provide organic carbon for the bacterial species to grow. For the first time, the ability of Gonium pectorale (G. pectorale) microalgae to break down phenanthrene (PHE) and anthracene (ANT) was investigated. Phenanthrene was shown to be more effectively degraded by G. pectorale (98%) as compared to Bacillus licheniformis (B. licheniformis) 19%. Similarly, G. pectorale has effectively degrade anthracene (98%) as compared with B. licheniformis (45%). The consortia of G. pectorale and B. licheniformis has shown a slight increase in the degradation of PHE (96%) and ANT (99%). Our findings show that B. licheniformis did not inhibit the growth of G. pectorale and in the consortia has effectively eliminated the PAHs from the media. Therefore G. pectorale has a tremendous potential to remove PAHs from the polluted environment. Future research will be conducted to assess Gonium's capacity to eliminate PAHs that exhibit high molar masses than that of PHE and ANT.
Collapse
Affiliation(s)
- Mubasher Zahir Hoque
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saravanan Sankaran
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Deepak Anand
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Musa M Musa
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Alexis Nzila
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Hautcharage, Luxembourg
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences (BABS), The University of New South Wales, Sydney, NSW, Australia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Radomirović M, Miletić A, Onjia A. Accumulation of heavy metal(loid)s and polycyclic aromatic hydrocarbons in the sediment of the Prahovo Port (Danube) and associated risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:323. [PMID: 36692645 DOI: 10.1007/s10661-023-10926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The current study investigated the concentrations, possible sources, toxicity, and ecological risk of eight heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and sixteen priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the port of Prahovo (Danube, Serbia). Among the examined HMs, the most abundant was Cu (38.3 mg/kg), followed by Zn. The Σ16PAHs concentrations ranged from 25 to 112.5 µg/kg, with 4-ring PAHs (17.3 µg/kg) being the most dominant in the study area. The mean and maximum values of HMs and PAHs obtained in this study were below the national regulatory limits and within environmental criteria. Particularly significant correlations between As, Cd, Cr, Ni, Pb, Zn, 5-, 6-ring PAHs, as well as between Pb and Hg, indicated their similar anthropogenic sources, pathways, and adsorption mechanisms. These findings were confirmed by cluster analysis and principal component analysis. Diagnostic ratios demonstrated that contamination in inner port stations was characterized by pyrogenic sources, while PAHs of petrogenic origin prevailed in samples near the port entrance. The mean ERM quotient (mERMq), toxic risk index (TRI), and toxic equivalent quotient (TEQ) were also calculated to assess the toxicity of the investigated HMs and PAHs in sediments. Positive matrix factorization suggested four potential sources as the main components of sediment contamination, whereas the risk assessment indicated a low or relatively insignificant risk of adverse biological effects from the combined toxicity of HMs and PAHs for the entire study area.
Collapse
Affiliation(s)
- Milena Radomirović
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Andrijana Miletić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| |
Collapse
|
6
|
Barbosa F, Rocha BA, Souza MCO, Bocato MZ, Azevedo LF, Adeyemi JA, Santana A, Campiglia AD. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:28-65. [PMID: 36617662 DOI: 10.1080/10937404.2022.2164390] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.
Collapse
Affiliation(s)
- Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno A Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Marília C O Souza
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mariana Z Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lara F Azevedo
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Anthony Santana
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Andres D Campiglia
- Department of Chemistry, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
7
|
Teodora Ciucure C, Geana EI, Lidia Chitescu C, Laurentiu Badea S, Elena Ionete R. Distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in waters and sediments from Olt River dam reservoirs in Romania. CHEMOSPHERE 2023; 311:137024. [PMID: 36323388 DOI: 10.1016/j.chemosphere.2022.137024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
This study provides important data on the distribution, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs), in surface waters and sediments collected from dam reservoirs on middle and lower course of the Olt River, the main tributary of the Danube, until the discharge into the Black Sea. A wide variation range of total PAHs concentrations in water (from 1.3 to 46.2 ng/L) and sediment (from 1.78 to 614.04 μg/kg) samples was emphasized by the results. The highest average PAHs concentration in water was recorded in the cold season and the lowest in the summer. In sediments, no differences were observed depending on the sampling period. Spatial distribution of PAHs in waters and sediments was correlated with the main anthropogenic activities along the river course. Regardless of the method used to attribute PAH sources (diagnostic ratios of specific PAHs, principal component analysis and hierarchical cluster analysis), it was confirmed that the potential anthropogenic sources of PAHs were both pyrogenic (incomplete combustion of biomass and coal) and pyrolytic (incomplete combustion of liquid fossil fuels and vehicle exhaust emissions), with a dominant pyrolytic input. Ecological risk assessment based on environmental quality standards, mean effect range-median quotient (m-ERM-Q), toxic equivalency factors (TEFs) and risk quotient (RQ) methods indicated potentially low ecological risks from PAHs. The ecological status of the Olt river waters poses no potential risk, and pollution of surface sediments can be classified as low polluted, except for two sites near industrial activities classified as moderately polluted. Therefore, a regular monitoring of PAHs concentration in the waters and sediments should be performed to prevent further contamination of PAHs in the studied area, especially in densely populated industrial areas.
Collapse
Affiliation(s)
- Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Romania
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Romania.
| | - Carmen Lidia Chitescu
- Dunarea de Jos" University of Galaţi, Faculty of Medicine and Pharmacy, 35 A.I. Cuza Str., 800010, Galaţi, Romania
| | - Silviu Laurentiu Badea
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Romania
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI Rm. Valcea, Romania
| |
Collapse
|
8
|
Mohammed R, Zhang ZF, Hu YH, Jiang C, He ZQ, Wang WJ, Li YF. Temporal-spatial variation, source forensics of PAHs and their derivatives in sediment from Songhua River, Northeastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4031-4043. [PMID: 34820731 DOI: 10.1007/s10653-021-01106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The distribution patterns and health risk assessment of nitrated polycyclic aromatic hydrocarbons (NPAHs), hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), and regular 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment from the Songhua River in northeastern China were investigated in this research. During dry seasons, concentrations of 16 USEPA priority PAHs, OH-PAHs, and NPAHs were extremely high, with average values of 1220 ± 288, 317 ± 641, 2.54 ± 3.98, and 12.2 ± 22.1 ng/g (dry weight, dw). The dry period level was confirmed to be 4 times greater than the wet period concentration. Modeling with positive matrix factorization (PMF) and estimation of diagnostic isomeric ratios were applied for identifying sources, according to the positive matrix factorization model: vehicle emissions (38.1%), biomass burning (25%), petroleum source (23.4%), and diesel engines source (13.5%) in wet season as well as wood combustion (44.1%), vehicle source (40.2%), coke oven (10.8%), and biomass burning (4.9%) in the dry season. The greatest seasonal variability was attributed to high molecular weight compounds (HMW PAHs). BaP was confirmed to be 81% carcinogenic in this study, which offers convincing proof of the escalating health issues.
Collapse
Affiliation(s)
- Rashid Mohammed
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| | - Zi-Feng Zhang
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Ying-Hua Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin, 150028, China
| | - Chao Jiang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases, Harbin, 150028, China
| | - Zhi-Qiang He
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Wen-Juan Wang
- Heilongjiang Pony Testing Technical Co.,Ltd, Harbin, 150028, Heilongjiang, China
| | - Yi-Fan Li
- State Key Laboratory of Urban Water Resource and Environment, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China
| |
Collapse
|
9
|
Ugochukwu UC, Chukwuone NA, Jidere C, Agu C, Kurumeh L, Ezeudu OB. Legacy PAHs in effluent receiving river sediments near a large petroleum products depot in Enugu, Nigeria: Human health risks and economic cost of pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119731. [PMID: 35820571 DOI: 10.1016/j.envpol.2022.119731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This study assessed the human health risk of exposure to legacy PAHs in the Nwaenebo River sediments that received effluents for over two decades from the Nigeria National Petroleum Corporation (NNPC) petroleum product Depot in Emene, Enugu, Nigeria. The study went further to estimate economic costs of the sediment PAHs pollution based on the human health risk of exposure. The human health risks were determined by estimating carcinogenic and mutagenic risks via Benzo[a]pyrene total potential equivalent (BaP TPE) and mutagenic equivalent quotient (MEQ). The economic costs of the sediment pollution comprised costs due to mortality and those due to morbidity and were estimated using the value of statistical lives (VSLs) and cost of illness (CoI), respectively. The study, with an appropriate selection of sampling points established that the NNPC petroleum Depot was responsible for the Nwaenebo River sediment PAHs pollution with ƩPAHs concentration 14.3-163 mg/kg. The carcinogenic and mutagenic risks varied from 1.3*10^-5 to 4.7*10^-5 and 1.4*10^-5 to 6.0*10^-5 respectively. Based on risk threshold of 10^-6, these risks were high. The long term economic costs of pollution of the sediments by the PAHs were estimated at 60.5 million USD and 0.46 million USD for mortality and morbidity costs, respectively.
Collapse
Affiliation(s)
- Uzochukwu C Ugochukwu
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria; Resource and Environmental Policy Research Centre, University of Nigeria Nsukka, Enugu State, Nigeria.
| | - Nnaemeka Andegbe Chukwuone
- Department of Agricultural Economics, University of Nigeria, Nsukka, Enugu State, Nigeria; Resource and Environmental Policy Research Centre, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Chika Jidere
- Department of Soil Science, University of Nigeria, Nsukka, Enugu State, Nigeria; Resource and Environmental Policy Research Centre, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Chizoba Agu
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria
| | - Leonard Kurumeh
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria
| | - Obiora Boniface Ezeudu
- Shell/UNN Centre for Environmental Management & Control, University of Nigeria, Enugu Campus, Nigeria
| |
Collapse
|
10
|
Spatial occurrence and sources of PAHs in sediments drive the ecological and health risk of Taihu Lake in China. Sci Rep 2022; 12:3668. [PMID: 35256642 PMCID: PMC8901641 DOI: 10.1038/s41598-022-07507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/11/2022] Open
Abstract
To study the spatial occurrence, sources, and ecological risks of 16 PAHs, surface sediments had been collected from seven major areas of Taihu Lake, China in April 2021. Results showed that the concentrations of ∑16PAHs varied between 1381.48 and 4682.16 ng g−1, and the contents of BghiP in each sample were the highest. The PAHs concentrations in the sediments near the lakeshore were much higher than those in the central area of the lake. The sedimentary ∑16PAHs were mainly composed of molecular-weight monomers and 4-ring PAHs showed superiority (35.69–45.02%). According to the ratio of PAH monomer, the sedimentary PAHs in Taihu Lake were dominantly derived from the combustion. Through the biological toxicity assessment and the BaP equivalent (BaPE), great biological risks of PAHs monomers i.e. DahA and IcdP were found. Both concentrations of ∑16PAHs and dominant 4–6-ring monomers accompanied by carcinogenic risks in many areas of Taihu Lake increased. It is necessary to strengthen monitoring and take measures to control the input of organic pollutants.
Collapse
|
11
|
Toxicity and Risks Assessment of Polycyclic Aromatic Hydrocarbons in River Bed Sediments of an Artisanal Crude Oil Refining Area in the Niger Delta, Nigeria. WATER 2021. [DOI: 10.3390/w13223295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that possess serious risks to human health and the environment. Forty riverbed sediments samples were collected in mangrove river bed sediments where artisanal refining of crude oil takes place in the Niger Delta of Nigeria. The concentration, occurrence, distribution, toxicity and health risk of sixteen priority PAHs (16PAHs) were analysed in the samples. Apart from Nap, Acy, BkF, InP and DbE, all the other PAHs were present in all the sampled points of the studied area with BbF and BaA recording the highest mean values. The range and mean of the total PAHs (∑16PAHs) of this study are 23.461–89.886 mg/kg and 42.607 ± 14.30 mg/kg dry weight (dw), which is classified as heavily contaminated when compared to the European classification of PAHs pollution in soil (>1.0 mg/kg). The range of the effect range factors used to assess the risk of PAHs in an ecosystem (Effect rang-low (ER-L) and Effect range-median ER-M) of this study is from 0.953 to 8.80 mg/kg. PAHs below ER-L (4.0 mg/kg) indicate no toxic effect, but values above ER-M (44.79 mg/kg) indicate toxic effects to the sediments, its resources and, ultimately, the public that consumes the resources thereof; hence, the study area falls within the contaminated category. The occurrence of the high molecular weight (HMW) PAHs (73.4%) supersedes those of the lower molecular weight (LMW) PAHs (26.6%). The diagnostic ratios and principal component analysis suggest that the main contributors of PAHS into the sediments are the combustion of biomass, fossil fuel (crude oil) and pyrogenic sources. The toxic equivalent quotient (TEQ) and mutagenic equivalent quotient (MEQ) of PAHs ranged from 2.96 to 23.26 mgTEQ/kg dw and 4.47 to 23.52 mgMEQ/kg dw, and the total mean toxic equivalency quotient (∑TEQ) (15.12 ± 8.4 mg/kg) is also greater than the safe level of 0.6 mg/kg, which indicates high toxicity potency. The mean incremental lifetime cancer risks (ILCRs) of human exposure to PAHs shows that both adults TotalILCR adults (6.15 × 10−5) and children TotalILCR children (2.48 × 10−4) can be affected by dermal contact rather than ingestion and inhalation. Based on these findings, the appropriate regulatory bodies and other organs of government in the region should enforce outright stoppage of the activities of these illegal artisans who do not have control mechanisms for loss control at the site and carry out appropriate clean-up of the area.
Collapse
|
12
|
Microalgae–Bacteria Consortia: A Review on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Association between Polycyclic Aromatic Hydrocarbon Exposure and Diarrhea in Adults. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Polycyclic aromatic hydrocarbons (PAHs) are not only natural but also anthropogenic contaminants that exist in many places in the environment. Human beings often accidentally ingest PAHs via smoking. Furthermore, smoking may increase the risk of bowel disorder, including diarrhea and other gastrointestinal problems. Therefore, PAH exposure is hypothesized to be related to diarrhea risk. This study discusses the association between diarrhea and PAH exposure in the United States adult population. Method: 10,537 participants from the National Health and Nutrition Examination Survey (NHANES 2001–2006) were involved in this cross-sectional analysis. Bowel disorders were assessed via examination of stool frequency and stool type. The concentrations of urinary PAH metabolites were used to evaluate PAH exposure. The association between bowel habits and PAH exposure was assessed using a multivariate logistic regression model with covariate assessment of gender, age, race, liver function, kidney function, and common chronic health diseases. Results: All PAH metabolites except 1-hydroxynaphthalene, 1-hydroxypyrene, and 9-hydroxyfluorene were substantially correlated with an increased risk of diarrhea (p < 0.05) after modification of relevant covariables. This study also revealed significant association in the group of females (p < 0.05). Furthermore, all PAH metabolites except 1-hydroxynaphthalene, 2-hydroxyphenanthrene, 1-hydroxypyrene, and 9-hydroxyfluorene show significantly positive association in the non-obesity group (BMI < 30, p < 0.05). Conclusions: PAH exposure is highly associated with risk of bowel disorders among the adult population in the United States, especially in female and non-obesity populations. More research is necessary to shed light on the pathophysiological mechanisms associated to PAH exposure and diarrhea.
Collapse
|