1
|
Şener H, Karakuş H, Gülekçi Y, Gündoğdu S. Microplastic pollution of thermal waters in Kütahya, Turkey. JOURNAL OF ENVIRONMENTAL QUALITY 2025. [PMID: 40107855 DOI: 10.1002/jeq2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) are emerging pollutants in aquatic systems, but their presence in groundwater, particularly thermal waters, is understudied. This study investigates the prevalence and characteristics of MPs in the thermal waters of Kütahya, Turkey, marking the first such exploration in the country and globally in thermal groundwater systems. Twenty-one samples (3 L each) were collected across nine regions and filtered using GF/C filters (0.45-µm pore size). Microscopic examination and μ-Raman spectroscopy revealed an average MP concentration of 0.85 ± 0.71 MPs/L (850 MPs/m3), with the highest at ST-8 (4.88 ± 2.98 MPs/L). Fibers (50%), fragments (39.8%), and films (10.2%) were identified, with polyethylene (22.2%) being the most common polymer type. Variability in MP abundance across stations suggests multiple contamination sources, including agricultural runoff, anthropogenic activities, and material used in water transport infrastructure. The findings indicate low-level MP contamination in thermal groundwater systems, which could influence both ecological health and human activities relying on these waters, such as thermal tourism and greenhouse irrigation. This pioneering study highlights the necessity for integrated waste management policies to mitigate MP pollution and underscores the role of thermal waters in understanding the transport dynamics of MPs in groundwater systems.
Collapse
Affiliation(s)
- Harun Şener
- Faculty of Engineering and Natural Sciences, Department of Forensic Science, Kütahya Health Sciences University, Kütahya, Turkey
| | - Hüseyin Karakuş
- Department of Geological Engineering, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Yakup Gülekçi
- Faculty of Engineering and Natural Sciences, Department of Forensic Science, Kütahya Health Sciences University, Kütahya, Turkey
| | - Sedat Gündoğdu
- Department of Basic Sciences, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Song KH, Yoon SG, Lee JY, An J. Significance of Morphology in Characterizing Human Health Risk from di(2-ethylhexyl) Phthalate in Polyvinyl Chloride Microplastics in Groundwater. TOXICS 2025; 13:105. [PMID: 39997921 PMCID: PMC11860201 DOI: 10.3390/toxics13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
In this study, a human health risk assessment was performed on the ingestion route of groundwater containing polyvinyl chloride (PVC) microplastics (MPs), and the carcinogenic and non-carcinogenic risks of di(2-ethylhexyl) phthalate (DEHP), a representative additive, were determined. In particular, the impact of volume diversity according to the shape (morphology) of PVC MP (fragment, fiber, film) on the risk characterization was intensively explored. Firstly, a continuous particle size distribution following a power function was derived using the abundance ratio of PVC MPs by size in the investigated groundwater, and human health risk assessment for DEHP in the PVC MPs was performed through the volume distribution according to the shape of MPs. DEHP human health risk assessment showed an excess cancer risk (ECR) of below 10-6 for a 95% cumulative probability for all MP shapes, but the values varied depending on the shape. Sensitivity analysis showed that the parameter that most affected human health risk was MP volume, second to concentration, which is dependent on MP shape. Therefore, it is necessary to consider the variety of MP shapes during human health risk assessment, and it can be achieved through probabilistic risk assessment utilizing the probability distribution for size and shape of MPs.
Collapse
Affiliation(s)
- Ki-Han Song
- Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Sang-Gyu Yoon
- Department of Smart City Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea;
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jinsung An
- Department of Smart City Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea;
- Department of Civil & Environmental Engineering, Hanyang University ERICA, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Khant NA, Chia RW, Moon J, Lee JY, Kim H. Review on the relationship between microplastics and heavy metals in freshwater near mining areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66009-66028. [PMID: 39641844 DOI: 10.1007/s11356-024-35675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Microplastics (MPs), degraded from plastic wastes, have drawn significant attention worldwide due to its prevalence and rapid transition. Contamination of freshwater with MPs has become an emerging global issue. Heavy metals (HMs), a prominent global pollutant, also garnered much attention due to their potential interaction with MPs, presenting a multifaceted environmental threat. The primary source of HM contamination in freshwater has been identified as mining sites. Additionally, the increasing use of plastic materials within mining areas raises concerns about MP release into the surrounding freshwater environments. Recent studies only provide information on the contamination of HMs status with MPs. However, studies on the mechanism responsible for MPs contamination from both external and internal sources of freshwater MPs and HMs are limited. The knowledge gaps in the deposition and fate of MPs in various mining situations and the possibility of combined impacts of heavy metals and MPs in the ecosystem raise ecological concerns. Here, we review the origins of MPs and HM pollution within mining sites and explore the potential combined detrimental impacts on plants and animal life. We found out that polystyrene (PS) and polyethylene (PE) have higher adsorption affinity to heavy metals, and the mingle toxic consequence of the MPs and HM can depend on the MP surface properties, pH, and salinity of the neighboring water solution. The Langmuir and Freundlich isotherm models enable the efficient design of adsorption systems. The Langmuir model describes single-layer adsorption at homogeneous sites, while the Freundlich model addresses multilayer adsorption on heterogeneous surfaces. The crucial mechanism of adsorption and desorption that underlies the occurrence of both MPs and heavy metals is a decisive matter in this issue.
Collapse
Affiliation(s)
- Naing Aung Khant
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jinah Moon
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Research On Microplastic in Groundwater (RMPG), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Heejung Kim
- Department of Geology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Wu F, Dong S, Wang X, Ai S, Liu Z, Wang X. Meta-analysis of the effects of microplastic on fish: Insights into growth, survival, reproduction, oxidative stress, and gut microbiota diversity. WATER RESEARCH 2024; 267:122493. [PMID: 39321729 DOI: 10.1016/j.watres.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aquatic ecosystems are primary repositories for microplastics (MPs), which pose significant risks to aquatic organisms. This study addresses the gap in understanding the effects of MPs pollution by analyzing 3,757 biological endpoints from 85 laboratory studies. Overall, our results indicate that MPs exposure significantly inhibits fish growth, survival, and reproductive ability, and increases oxidative damage, specifically, MPs exposure leads to elevated levels of malondialdehyde. However, MPs do not have a significant impact on the diversity of fish gut microbiota. Subgroup and correlation analyses indicate that the extent of various toxic effects is influenced by multiple factors, including MPs' type, exposure pathway, size, concentration, as well as the aquatic environment or life stage of the fish. In addition, the regression analysis revealed a relationship between the magnitude of toxic effects and the size, concentration, or duration of MPs exposure. This study provides useful information for understanding the potential impacts of MPs on aquatic organisms and offers new insights for the protection and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Shunqi Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; College of Life Sciences, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China.
| |
Collapse
|
5
|
Dogra K, Kumar M, Deoli Bahukhandi K, Zang J. Traversing the prevalence of microplastics in soil-agro ecosystems: Origin, occurrence, and pollutants synergies. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104398. [PMID: 39032427 DOI: 10.1016/j.jconhyd.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
The ubiquity of plastics in modern life has made them a significant environmental concern and a marker of the Anthropocene era. The degradation of plastics results in the formation of microplastics (MPs), which measure 5 mm or less. The coexistence of MPs with other pollutants found in sludge, water treatment plant effluents, surface water, and groundwater, shapes the environmental landscape together. Despite extensive investigation, the long-term implications of MPs in soils remain uncertain, underscoring the importance of delving into their transportation and interactions with soil biota and other contaminants. The present article provides a comprehensive overview of MPs contamination in soil, encompassing its sources, prevalence, features, and interactions with soil flora and fauna, heavy metals, and organic compounds. The sources of MPs in soil agroecosystems are mulching, composting, littering, sewage sludge, irrigation water, and fertilizer application. The concentration of MPs reported in plastic mulch, littering, and sewage sludge is 503 ± 2760 items per kg-1, 4483 ± 2315 MPs/kg, and 11,100 ± 570 per/kg. The transport of MPs in soil agroecosystems is due to their horizontal and vertical migration including biotic and abiotic mobility. The article also highlighted the analytical process, which includes sampling planning, collection, purification, extraction, and identification techniques of MPs in soil agroecosystems. The mechanism in the interaction of MPs and organic pollutants includes surface adsorption or adhesion cation bridging, hydrogen bonding, charge transfer, ligand exchange, van der Waals interactions, and ion exchange.
Collapse
Affiliation(s)
- Kanika Dogra
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, Mexico.
| | - Kanchan Deoli Bahukhandi
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun 248007, Uttarakhand, India
| | - Jian Zang
- Joint International Research Laboratory of Green Buildings and Built Environments, School of Civil Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Cheng D, Liu H, Qian W, Yao R, Wang X. Migration characteristics of microplastics in riparian soils and groundwater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:796. [PMID: 39112830 DOI: 10.1007/s10661-024-12962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/01/2024] [Indexed: 09/14/2024]
Abstract
Investigations have revealed the presence of microplastics in both soil and groundwater, but the migration characteristics from soil to groundwater remain incompletely understood. In this study, two sampling sections consisting of soil-groundwater-river water were established near Lianxi Bridge and Xilin Bridge along the Jiuxi River in Xiamen. A total of 22 soil samples, 36 groundwater samples, and 18 river water samples were collected. Microplastics were detected in all samples with an abundance range of 392-836 n/kg in soil (mean, 655 ± 177 n/kg), 0.58-2.48 n/L groundwater (mean, 1.23 ± 0.42 n/L), and 0.38-1.80 n/L in river water (mean, 0.86 ± 0.41 n/L). Flakes predominantly constituted the shape of microplastics found in soil, while fibers dominated those present in water. Black, yellow, and red were the dominant color types. Polyamide (PA) and polyethylene (PE) were the main components of microplastics within soils, whereas polyethylene terephthalate (PET), polypropylene (PP), and PA prevailed within water. Microplastic particle sizes ranged from 39 to 2498 μm in soils, mainly from 29 to 3394 μm in water. The upstream section displayed higher abundances of microplastic compared to the downstream, revealing the soil particles having an intercepting effect on microplastics. The distribution and migration of microplastics in soil and groundwater are affected by many factors, including natural and anthropogenic factors, such as soil depth, soil properties, pore structure, hydrodynamics, hydraulic connections between groundwater and surface water, the extensive utilization and disposal of plastics, irrational exploitation of groundwater, and morphology and types of microplastics. These research findings contribute to a better understanding of the pathways, migration capacity, and influencing factors associated with microplastic entry into groundwater, thereby providing valuable technical support for the development of strategies aimed at controlling microplastic pollution.
Collapse
Affiliation(s)
- Dongdong Cheng
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
- Key Laboratory of the Coastal and Wetland Ecosystems, Xiamen University, Ministry of Education, Xiamen, 361102, PR China.
| | - Weixu Qian
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Rui Yao
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Xinhong Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
7
|
Umeh OR, Ophori DU, Ibo EM, Eke CI, Oyen TP. Groundwater systems under siege: The silent invasion of microplastics and cock-tails worldwide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124305. [PMID: 38830527 DOI: 10.1016/j.envpol.2024.124305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Microplastics (MPs) contamination is one of the significant escalating environmental concerns worldwide, and this stems from the increasing production and unlawful disposal of plastic materials. Regretfully, the synthesis of plastic materials is expected to triple in the upcoming years. Nevertheless, MPs pollution in marine, aquatic, and terrestrial settings has received much attention, unlike in groundwater systems. This study exhaustively reviewed varying degrees of recent publications in various search engines and provided a detailed state of current knowledge and research progress vis-à-vis MPs and cock-tail pollution in groundwater systems. Evidently, groundwater sources are severely contaminated as a result of growing anthropogenic activities and vertical movement of MPs and cock-tails from the atmospheric, terrestrial, and aquatic environments, however, fewer researchers have fixated their attention on estimating the occurrence of MPs in groundwater resources, while sufficient information regarding their sources, sampling methods, abundance, transport pathways, fate, modeling techniques, appropriate and adequate data, sorption properties, separation from other environmental media, toxicity, and remedial measures are extensively lacking. In addition, MPs may combine with other toxic emerging contaminants to improve migration and toxicity; however, no research has been conducted to fully understand cock-tail migration mechanisms and impacts in groundwater systems. Over time, groundwater may be regarded as the primary sink for MPs, if effective actions are neglected. Overall, this study detected a lack of concern and innumerable voids in this field; hence, vital and nascent research gaps were identified for immediate, advanced, and interdisciplinary research investigations.
Collapse
Affiliation(s)
- Odera R Umeh
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Duke U Ophori
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Eziafakaego M Ibo
- Department of Environmental Management, Pan African University Life and Earth Sciences Institute, Ibadan, Oyo State, 200002, Nigeria.
| | - Chima I Eke
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| | - Toritseju P Oyen
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
8
|
Wang R, Tang H, Yang R, Zhang J. Emerging contaminants in water environments: progress, evolution, and prospects. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2763-2782. [PMID: 38822613 DOI: 10.2166/wst.2024.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
This article employs bibliometric tools like VOSviewer, Bibliometrix, and CiteSpace for a comprehensive visual analysis of 1,612 documents on Emerging Contaminants in Waters from the Web of Science database. The objective is to elucidate the historical development, research hotspots, and trends in international studies of this field, offering valuable insights and guidance for future research directions. The analysis reveals a consistent increase in publications from 2003 to 2023, with the United States, China, and Spain being the most prolific contributors. A detailed examination of keyword co-occurrence and cluster analysis shows a predominant focus on themes such as pollutant detection, risk assessment, and biogeochemical cycling. Furthermore, the study underscores the significance of forming interdisciplinary networks among authors and institutions, highlighting its critical role in enhancing the quality and innovation of scientific research. The findings of this study not only chart the progression and focal points of research in this domain but also underscore the pivotal role of international collaboration, serving as an indispensable reference for shaping future research trajectories and fostering global cooperation.
Collapse
Affiliation(s)
- Ruiqi Wang
- Nanjing Water Group Co., Ltd, Nanjing 210000, China; R.W. and H.T. contributed equally to this work and should be regarded as co-first authors
| | - Huanchen Tang
- College of Fashion and Art Design, Donghua University, Shanghai 200051, China E-mail: ; R.W. and H.T. contributed equally to this work and should be regarded as co-first authors
| | - Ruitao Yang
- School of Finance and Economics, Jingjiang College, Jiangsu University, Zhenjiang 212028, China
| | - Jingduo Zhang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Sharma P, Sharma P. Micro(nano)plastics: invisible compounds with a visible impact. F1000Res 2024; 13:69. [PMID: 38659492 PMCID: PMC11040229 DOI: 10.12688/f1000research.142212.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The plastic related research has been an epicentre in recent times. The presence and spread of micro (nano) plastics (MNPs) are well-known in the terrestrial and aquatic environment. However, the focus on the fate and remediation of MNP in soil and groundwater is limited. The fate and bioaccumulation of ingested MNPs remain unknown within the digestive tract of animals. There is also a significant knowledge gap in understanding the ubiquitous organic environmental pollutants with MNPs in biological systems. Reducing plastic consumption, improving waste management practices, and developing environmentally friendly alternatives are some of the key steps needed to address MNP pollution. For better handling and to protect the environment from these invisible substances, policymakers and researchers urgently need to monitor and map MNP contamination in soil and groundwater.
Collapse
Affiliation(s)
- Prabhakar Sharma
- Department of Agricultural Engineering and Technology, School of Engineering, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Prateek Sharma
- Environmental Science, Central University of Jharkhand, Ranchi, Jharkhand, 835222, India
| |
Collapse
|
10
|
Subair A, Krishnamoorthy Lakshmi P, Chellappan S, Chinghakham C. Removal of polystyrene microplastics using biochar-based continuous flow fixed-bed column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13753-13765. [PMID: 38265588 DOI: 10.1007/s11356-024-32088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
In the realm of environmental challenges, microplastics have emerged as a pressing threat, presenting risks to both individuals and ecosystems. Conventional treatment plants are presently not equipped for effectively removing these minute contaminants. This study presents an investigation into the potential of a continuous flow biochar column, utilizing biochar derived from banana peel through a nitrogen-free slow pyrolysis process for the removal of microplastics. A systematic exploration of various parameters, including bed height, flow rate, inflow microplastic concentration, and microplastic size is undertaken to discern their impact on polystyrene removal efficiency. A peak removal efficiency of 92.16% has been achieved under specific conditions: a 6-cm bed height, a 3-mL/min flow rate, an inlet concentration of 0.05 g/L, and microplastic sizes ranging from 150 to 300 µm. The removal efficiency was inversely affected by flow rate while directly influenced by bed height. To deepen the understanding of polystyrene removal on biochar, a detailed characterization of the synthesized material was carried out. The removal of microplastics by banana peel biochar (BPB) is observed to be dominated by adsorption and filtration processes. The entanglement of microplastics with minuscule biochar granules, capture between particles, and entrapment in the porous system were identified as the mechanisms of removal. Leveraging the hydrophobic nature of polystyrene microplastics, interactions with the hydrophobic functional groups in BPB result in effective adsorption. This is further complemented by self-agglomeration and filtration mechanisms that synergistically contribute to the elimination of larger agglomerates. The findings thus provide a comprehensive understanding, offering hope for a more effective strategy in mitigating the environmental impact of microplastics.
Collapse
Affiliation(s)
- Akhila Subair
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| | | | - Suchith Chellappan
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| | | |
Collapse
|
11
|
Xu J, Zuo R, Shang J, Wu G, Dong Y, Zheng S, Xu Z, Liu J, Xu Y, Wu Z, Huang C. Nano- and micro-plastic transport in soil and groundwater environments: Sources, behaviors, theories, and models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166641. [PMID: 37647954 DOI: 10.1016/j.scitotenv.2023.166641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
With the increasing use of plastics, nano- and micro-plastic (NMP) pollution has become a hot topic in the scientific community. Ubiquitous NMPs, as emerging contaminants, are becoming a global issue owing to their persistence and potential toxicity. Compared with studies of marine and freshwater environments, investigations into the sources, transport properties, and fate of NMPs in soil and groundwater environments remain at a primary stage. Hence, the promotion of such research is critically important. Here, we integrate existing information and recent advancements to compile a comprehensive evaluation of the sources and transport properties of NMPs in soil and groundwater environments. We first provide a systematic description of the various sources and transport behaviors of NMPs. We then discuss the theories (e.g., clean-bed filtration and Derjaguin-Landau-Verwey-Overbeek theories) and models (e.g., single-site and dual-site kinetic retention and transport models) of NMP transport through saturated porous media. Finally, we outline the potential limitations of current research and suggest directions for future research. Overall, this review intends to assimilate and outline current knowledge and provide a useful reference frame to determine the sources and transport properties of NMPs in soil and groundwater environments.
Collapse
Affiliation(s)
- Jun Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Jinhua Shang
- Jinan Rail Transit Group Co., Ltd, Jinan 250014, China
| | - Guanlan Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Yanan Dong
- Jinan Rail Transit Group Co., Ltd, Jinan 250014, China
| | - Shida Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Zuorong Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jingchao Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yunxiang Xu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Ziyi Wu
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Chenxi Huang
- College of Water Science, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
12
|
Priya KL, Iqbal S, Archana AR, Gopika B, Mina M, Haddout S, M Madhu A. Implications of solid waste dumps on the microplastic abundance in groundwater in Kollam, India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119224. [PMID: 37837760 DOI: 10.1016/j.jenvman.2023.119224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Water pollution caused by microplastics has garnered increasing attention in recent years due to its potential ecological and human health risks. However, there are very limited studies and a general lack of consensus regarding the presence and negative impacts of microplastics in groundwater. Due to their small size, microplastics can easily be transported at surface as well as subsurface levels, potentially reaching the groundwater table and contaminating the groundwater system This contamination is expected to occur more rapidly in landfill areas and other locations where plastic waste is dumped. In this study, we examined well water samples collected from areas near various dumping sites to assess the abundance and characteristics of microplastics. An average of 12 items/L of microplastics were found in groundwater wells near eight dumping sites in Kollam Corporation. The predominant shape of microplastics in the groundwater samples was fibres, followed by flakes, with black being the predominant colour. The areal extent of solid waste dumping was observed to have an influence on the abundance of microplastics. Additionally, the pH of groundwater near heavy dumping sites was found to be in the acidic range, indicating the intrusion of leachate from dumps into groundwater. The study revealed that the leachate from solid waste dumps is the primary source of microplastics in groundwater. Furthermore, a risk assessment of the microplastic pollution was carried out using an index namely Microplastic Pollution Index and the areas of high risks were identified. The locations having heavy solid waste dumping and those near coastal areas were observed to be at high risk, thereby indicating that both the leachate from dumps and sea water intrusion can cause higher microplastic pollution risk in the groundwater system. The findings of this study are expected to support managers in formulating and implementing effective solid waste management plans to mitigate microplastic pollution in the groundwater system.
Collapse
Affiliation(s)
- K L Priya
- Department of Civil Engineering, TKM College of Engineering, Kollam, India.
| | - Shabana Iqbal
- Department of Civil Engineering, TKM College of Engineering, Kollam, India
| | - A R Archana
- Department of Civil Engineering, TKM College of Engineering, Kollam, India
| | - B Gopika
- Department of Civil Engineering, TKM College of Engineering, Kollam, India
| | - Michi Mina
- Department of Civil Engineering, TKM College of Engineering, Kollam, India
| | - S Haddout
- Department of Physics, Ibn Tofail University, Morocco
| | - Athul M Madhu
- Department of Civil Engineering, TKM College of Engineering, Kollam, India
| |
Collapse
|
13
|
Adamu Ugya Y, Chen H, Sheng Y, Ajibade FO, Wang Q. A review of microalgae biofilm as an eco-friendly approach to bioplastics, promoting environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 236:116833. [PMID: 37543134 DOI: 10.1016/j.envres.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
In this comprehensive review, we delve into the challenges hindering the large-scale production of microalgae-based bioplastics, primarily focusing on economic feasibility and bioplastic quality. To address these issues, we explore the potential of microalgae biofilm cultivation as a sustainable and highly viable approach for bioplastic production. We present a proposed method for producing bioplastics using microalgae biofilm and evaluate its environmental impact using various tools such as life cycle analysis (LCA), ecological footprint analysis, resource flow analysis, and resource accounting. While pilot-scale and large-scale LCA data are limited, we utilize alternative indicators such as energy efficiency, carbon footprint, materials management, and community acceptance to predict the environmental implications of commercializing microalgae biofilm-based bioplastics. The findings of this study indicate that utilizing microalgae biofilm for bioplastic production offers significant environmental sustainability benefits. The system exhibits low energy requirements and a minimal carbon footprint. Moreover, it has the potential to address the issue of wastewater by utilizing it as a carbon source, thereby mitigating associated problems. However, it is important to acknowledge certain limitations associated with the method proposed in this review. Further research is needed to explore and engineer precise techniques for manipulating microalgae biofilm structure to optimize the accumulation of desired metabolites. This could involve employing chemical triggers, metabolic engineering, and genetic engineering to achieve the intended goals. In conclusion, this review highlights the potential of microalgae biofilm as a viable and sustainable solution for bioplastic production. While acknowledging the advantages, it also emphasizes the need for continued synthetic studies to enhance the efficiency and reliability of this approach. By addressing the identified drawbacks and maximizing the utilization of advanced techniques, we can further harness the potential of microalgae biofilm in contributing to a more environmentally friendly and economically feasible bioplastic industry.
Collapse
Affiliation(s)
- Yunusa Adamu Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China.
| |
Collapse
|
14
|
Brožová K, Halfar J, Čabanová K, Motyka O, Drabinová S, Hanus P, Heviánková S. The first evidence of microplastic occurrence in mine water: The largest black coal mining area in the Czech Republic. WATER RESEARCH 2023; 244:120538. [PMID: 37666150 DOI: 10.1016/j.watres.2023.120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Climate change is creating new challenges for water supply worldwide, making the search for new sources of water vital. As mine water could serve as a potential source, this study investigated the presence of microplastics in water from terminated deep mines in the largest coal basin in the Czech Republic, as well as in water from nearby shallow wells. The particles found were analyzed for size, polymer composition, color and morphology using the ImageJ tool, infrared spectroscopy with Fourier transform (FTIR) and an optical stereomicroscope with a digital camera. Microplastics were detected in all tested sites. Their range accounted for 2.5-17.5 items/L for mine water samples and 2.5-20 items/L for well samples, with fibers being the dominant type. The average width of particles from mine water and wells amounted to 58 µm; 71 µm, length to 655 µm; 501 µm and area to 22,067 µm2; 28,613 µm2, respectively. Blue color was prevalent, among materials, in both cases, plastic coated paper was found dominant to Polyethylene terephthalate (PET), Polyester (PES), Tetrafluoroethylene-perfluoro (Propyl Vinyl Ether) - Copolymer (TFE-PPVE), and polypropylene (PP). The research provides the first evidence of microplastics' presence in underground waters from deep mines and shallow wells in the same area. The data suggest that it is almost impossible to find underground water sources free of microplastic contamination. In this context, atmospheric contamination from mine ventilation and infiltration through terminated mines were identified as potential sources, while infiltration through soil and rock formations is unlikely given the geological composition. The results of this study can serve as a relevant basis for further research on microplastics in mine waters. Additionally, the conclusions can advance the development in remediation technologies of microplastics from deep underground waters and their implementation in practice, particularly in light of upcoming legislation.
Collapse
Affiliation(s)
- Kateřina Brožová
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia
| | - Jan Halfar
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia.
| | - Kristina Čabanová
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia; Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia
| | - Oldřich Motyka
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia; Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia
| | - Silvie Drabinová
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia
| | - Pavel Hanus
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia
| | - Silvie Heviánková
- Faculty of Mining and Geology, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czechia
| |
Collapse
|
15
|
Mishra A, Mohan Viswanathan P, Ramasamy N, Panchatcharam S, Sabarathinam C. Spatiotemporal distribution of microplastics in Miri coastal area, NW Borneo: inference from a periodical observation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103225-103243. [PMID: 37688695 PMCID: PMC10567912 DOI: 10.1007/s11356-023-29582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively. The highest concentration of MPs was detected near the river mouths and industrial areas where the waste discharge rate and anthropogenic activities dominate. Fibre-type MPs are the most abundant, with an average of nearly 64%, followed by fragments, films, microbeads, and foams. The most dominant polymer types were polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyester (PET). Overall, the current study shows a better understanding of MPs occurrence and potential sources in the Miri coastal area.
Collapse
Affiliation(s)
- Anshuman Mishra
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Nagarajan Ramasamy
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | | | |
Collapse
|
16
|
Xuchao P, Yong H, Semirumi DT, Zhong F, Rezaie R. Development of cellulose/hydroxyapatite/TiO 2 scaffolds for efficient removal of lead (II) ions pollution: Characterization, kinetic analysis, and artificial neural network modeling. Int J Biol Macromol 2023; 246:125630. [PMID: 37394219 DOI: 10.1016/j.ijbiomac.2023.125630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The utilization of nano-biodegradable composites for removing pollutants and heavy metals in aquatic environments has been widespread. This study focuses on synthesizing cellulose/hydroxyapatite nanocomposites with titanium dioxide (TiO2) via the freeze-drying method for the adsorption of lead ions in aquatic environments. The physical and chemical properties of the nanocomposites, including structure, morphology, and mechanical properties, were analyzed through FTIR, XRD, SEM, and EDS. In addition, parameters affecting the adsorption capacity, such as time, temperature, pH, and initial concentration, were determined. The nanocomposite exhibited a maximum adsorption capacity of 1012 mg⸱g-1, and the second-order kinetic model was found to govern the adsorption process. Additionally, an artificial neural network (ANN) was created using weight percentages (wt%) of nanoparticles included in the scaffold to predict the mechanical behavior, porosity, and desorption of the scaffolds at various weight percentages of hydroxyapatite (nHAP) and TiO2. The results of the ANN indicated that the incorporation of both single and hybrid nanoparticles into the scaffolds improved their mechanical behavior and desorption, as well as increased their porosity.
Collapse
Affiliation(s)
- Pan Xuchao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - He Yong
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - D T Semirumi
- Ceramic Engineering Research Center, Scientific and Research Town, Isfahan, Iran
| | - Fang Zhong
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - R Rezaie
- Ceramic Engineering Research Center, Scientific and Research Town, Isfahan, Iran
| |
Collapse
|
17
|
Balestra V, Bellopede R. Microplastics in caves: A new threat in the most famous geo-heritage in the world. Analysis and comparison of Italian show caves deposits. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118189. [PMID: 37210820 DOI: 10.1016/j.jenvman.2023.118189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Microplastic pollution represent a worldwide concern, however, in karst areas is still largely unknown, especially in underground environments. Caves are the most important geological heritage worldwide, rich in speleothems, unique ecosystems custodians of important drinking water reserves, and a significant economic resource. Thank to their relatively stable environmental conditions, they can preserve information for a long time such as paleontological/archaeological remains, however, these characteristics make caves vulnerable environments too, easily damaged by climate variations and pollution. To increase the current knowledge of microplastic pollution, the deposits of different Italian show caves were investigated, improving the method for microplastic separation. Microplastic were identified and characterised using MUPL automated software, observed with and without UV light under a microscope, and verified under μFTIR-ATR, highlighting the importance of combine different methods. Microplastics were present in sediments of all examined caves, and were always greater along the tourist route (an average of 4300 items/kg) than the speleological areas (an average of 2570 items/kg). Microplastics less than 1 mm dominated the samples and the amount increased with the decrease in the size considered. Fibre-shaped dominated the samples and 74% particles was fluorescent under UV light. Analysed sediment samples contained especially polyesters and polyolefins. Our results highlight the presence of microplastic pollution in show caves, giving useful information to assess risks posed by microplastics in show caves and emphasizing the importance of pollutants monitoring in underground environments to define strategies for the conservation and management of caves and natural resources.
Collapse
Affiliation(s)
- Valentina Balestra
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.
| |
Collapse
|
18
|
Aslam S, Khurram A, Hussain R, Qadir A, Ahmad SR. Sources, distribution, and incipient threats of polymeric microplastic released from food storage plastic materials. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:638. [PMID: 37138178 DOI: 10.1007/s10661-023-11242-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
The present study aimed to find out the source, distribution, quantity, and incipient threats of the microplastics (MPs) released by food-packing plastic materials, plastic bags, bottles, and containers on human health, biodiversity, water bodies, and atmosphere. For this purpose, 152 articles about MPs (0.1 to 5000 µm) and nanoplastics (NP) 1 to 100 nm) were reviewed and interpreted their results in the present articles about microplastics. The highest plastic waste is generated by China (⁓ 59 Mt), the USA (⁓ 38 Mt), Brazil (⁓ 12 Mt), Germany (⁓ 15 Mt), and Pakistan (⁓ 6 Mt). The count of MPs (MPs/kg) in Chinese salt was 718, UK 136, Iran 48, and USA 32, while MPs in bivalves, i.e., in Chinese bivalves was 2.93, UK 2.9, Iran 2.2, and Italy 7.2 in MPs/kg, respectively. The MPs count in Chinese fish was 7.3, Italy's 23, the USA's 13, and UK's 1.25 in MPs/kg, respectively. The MP concentrations in the water bodies, i.e., USA, were 15.2, Italy 7, and UK 4.4 in mg/L, respectively. It was critically reviewed that MPs can enter the human body causing various disorders (neurotoxic, biotoxic, mutagenic, teratogenic, and carcinogenic disorders) because of the presence of various polymers. The present study concluded that MPs were released from processed and stored food containers, either through physical, biological, or chemical means, which harshly affect the surrounding environment and human health. The study recommended that alternatives to plastic containers are glass and bioplastic containers, papers, cotton bags, wooden boxes, and tree leaves need to use to avoid direct consumption of MPs from food.
Collapse
Affiliation(s)
- Sarfa Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Ayesha Khurram
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Rahib Hussain
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Geographic Sciences &, Natural Resources Research, CAS, Beijing, 100101, China.
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
19
|
Zhang M, Liu N, Hou L, Li C, Li C. Adsorption behaviors of chlorpyrifos on UV aged microplastics. MARINE POLLUTION BULLETIN 2023; 190:114852. [PMID: 36996610 DOI: 10.1016/j.marpolbul.2023.114852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Both non-degradable and biodegradable plastics can act as vectors of diverse organic pollutants. In this study, two types of biodegradable microplastics [poly (butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA)] and one type of non-degradable microplastics [polypropylene (PP)] were selected to investigate the impacts of ultraviolet (UV) irradiation for one month on microplastics surface modification and their adsorption behaviors for chlorpyrifos (CPF). The study revealed that PBAT held the largest adsorption capacity, and PLA held the fastest adsorption rate. The UV irradiation diminished the adsorption capacities on PLA and PP but enhanced the adsorption capacities on PBAT. The adsorption capacity normalized by specific surface area revealed that specific surface area was the dominant factor for affecting the adsorption capacities on PP and PLA after UV irradiation. These findings further clarify the interaction between CPF and microplastics, and provide a theoretical basis for assessing the ecological risk of microplastics in water.
Collapse
Affiliation(s)
- Minggu Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Hou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chao Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
20
|
Surendran U, Jayakumar M, Raja P, Gopinath G, Chellam PV. Microplastics in terrestrial ecosystem: Sources and migration in soil environment. CHEMOSPHERE 2023; 318:137946. [PMID: 36708782 DOI: 10.1016/j.chemosphere.2023.137946] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/10/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Plastics, especially microplastics in soils, are considered a severe environmental issue worldwide. However, globally, the main research focus is on microplastic pollution in the marine environment, the microplastic pollution on soils and sediments remains on the sideline so far. But the fact is that microplastics are omnipresent in terrestrial systems in the form of microbeads in industrial systems and in sewage sludge. Their presence in agricultural soils and sediments is enormously increased due to plastic mulching, plastic greenhouses and compost and extensive use of controlled release fertilizers. Therefore, this review outlines the global scenario regarding plastics and microplastics production, consumption, and possible pathways of penetration into the soil environment. Various mechanisms to restrict and manage the pathways of plastics and microplastics into the soil environment are also discussed. This review also focuses on the challenges and limitations on the use of plastic alternates such as bioplastics and oxo plastics. Also, the knowledge gaps on the source of microplastics in the environment and their deleterious effects on properties of soil, soil health and focused light on their soil trophic transfer in food chains via plants. This review provides a detailed insight on the management and possible control measures to alleviate the potential risk caused by microplastics pollution in the soil environment and the overall ecosystem's health. In spite of the occurrence and fate of microplastics on terrestrial environment, knowledge gaps and challenges for tackling this contamination are also explored which facilitates the policy makers to develop regulatory measures towards the containment of microplastics in living ecosystem.
Collapse
Affiliation(s)
- U Surendran
- Centre for Water Resources Development and Management, Kozhikode, Kerala, India.
| | - M Jayakumar
- Central Coffee Research Institute , Coffee Research Station, Chikmagaluru, Karnataka, India
| | - P Raja
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Ooty, Tamil Nadu, India
| | - Girish Gopinath
- Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | | |
Collapse
|
21
|
Goveas LC, Nayak S, Kumar PS, Rangasamy G, Vidya SM, Vinayagam R, Selvaraj R, Vo DVN. Microplastics occurrence, detection and removal with emphasis on insect larvae gut microbiota. MARINE POLLUTION BULLETIN 2023; 188:114580. [PMID: 36657228 DOI: 10.1016/j.marpolbul.2023.114580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Microplastics have been identified in all living forms including human beings, the present need is to restrain its spread and devise measures to remediate microplastics from polluted ecosystems. In this regard, the present review emphasizes on the occurrence, sources detection and toxic effects of microplastics in various ecosystems. The removal of microplastics is prevalent by various physico-chemical and biological methods, although the removal efficiency by biological methods is low. It has been noted that the degradation of plastics by insect gut larvae is a well-known aspect, however, the underlying mechanism has not been completely identified. Studies conducted have shown the magnificent contribution of gut microbiota, which have been isolated and exploited for microplastic remediation. This review also focuses on this avenue, as it highlights the contribution of insect gut microbiota in microplastic degradation along with challenges faced and future prospects in this area.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603 110, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - S M Vidya
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, India.
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Dai Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
22
|
Balestra V, Vigna B, De Costanzo S, Bellopede R. Preliminary investigations of microplastic pollution in karst systems, from surface watercourses to cave waters. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 252:104117. [PMID: 36424222 DOI: 10.1016/j.jconhyd.2022.104117] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microplastic pollution in different environments has increasingly been documented in detail in recent times, but it is still poorly studied in caves and karst aquifers. To deepen the knowledge of microplastic pollution, for karst environment protection and conservation purposes, we collected and investigated different water samples from a karst area of Italy, considering connected surface and cave waters. Microplastics were extracted from water samples by filtration and subjected to organic matter removal with 15% hydrogen peroxide solution. Microplastics on filters were counted and characterised (size, colour, shape) via visual identification under a microscope, with and without UV light, exploiting fluorescence given by fluorescent whitening additives contained in plastic materials. Finally, spectroscopic analyses were carried out on 10% of the microplastics observed on each filter. The concentration of microplastics in cave waters varied from 12 to 54 items/L, with a mean value of 28 items/L. In the surface water of a tributary, it was of 23 items/L, and in the downstream, it was 29 items/L. Fibres represented the most abundant shape (95.1%) in the karst system waters, and most microplastics (82.9%) were smaller than 1 mm. The majority of the microplastics were fluorescent under UV light (84.8%), and most fluorescent particles were transparent (46%). However, black microplastics (68%) were more common among the non-fluorescent ones. Polyethylene (51.7%) was the main type of microplastics found in the karst system waters. Our results show the presence of microplastics in karst systems and provide useful information for future research. Karst aquifers are open systems, subjected to possible contamination by surface pollutants. Microplastics in karst systems can be consumed by animals, damage ecosystems and contaminate water resources; surface karst areas and underground environments should therefore be monitored and protected, especially regarding the management of water resources. To further understand the sources and transport of microplastics within a karst system, analyses on a greater range of surface and subterranean waters throughout the world are required.
Collapse
Affiliation(s)
- Valentina Balestra
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Bartolomeo Vigna
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Sean De Costanzo
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|