1
|
Verhulst E, De Bruyn M, Berckmans P, Sim Y, Augustyns K, Pintelon I, Berg M, Van Wielendaele P, Lambeir A, Sterckx YG, Nelissen I, De Meester I. Human Transmembrane Serine Protease 2 (TMPRSS2) on Human Seminal Fluid Extracellular Vesicles Is Proteolytically Active. J Extracell Vesicles 2025; 14:e70061. [PMID: 40091430 PMCID: PMC11911546 DOI: 10.1002/jev2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Human transmembrane serine protease 2 (TMPRSS2) has garnered substantial interest due to its clinical significance in various pathologies, notably its pivotal role in viral entry into host cells. The development of effective strategies to target TMPRSS2 is a current area of intense research and necessitates a consistent source of active TMPRSS2 with sufficient stability. Here, we comprehensively characterised human seminal-fluid extracellular vesicles (SF-EVs, also referred to as prostasomes), bearing a native source of surface-exposed, enzymatically active TMPRSS2 as demonstrated by high-sensitivity flow cytometry and a fluorometric activity assay. Additionally, we recombinantly produced human TMPRSS2 ectodomain in mammalian cells adopting a directed activation strategy. We observed comparable catalytic parameters and inhibition characteristics for both native SF-EV-associated and recombinant TMPRSS2 when exposed to serine protease inhibitor Nafamostat mesylate. Leveraging these findings, we developed a robust in vitro biochemical assay based on these SF-EVs for the screening of TMPRSS2-targeting compounds. Our results will accelerate the discovery and advancement of efficacious therapeutic approaches targeting TMPRSS2 and propel further exploration into the biological role of SF-EV-associated active TMPRSS2.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Michelle De Bruyn
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | | | - Yani Sim
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Antwerp Centre for Advanced Microscopy (ACAM), Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Maya Berg
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Inge Nelissen
- Health UnitFlemish Institute for Technological ResearchMolBelgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
2
|
Investigation of Sperm and Seminal Plasma Candidate MicroRNAs of Bulls with Differing Fertility and In Silico Prediction of miRNA-mRNA Interaction Network of Reproductive Function. Animals (Basel) 2022; 12:ani12182360. [PMID: 36139221 PMCID: PMC9495167 DOI: 10.3390/ani12182360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize target genes based on predicted biological processes. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥5 magnitudes). Interestingly, expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further in silico analysis revealed categorized genes may have a plausible association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies. Abstract Recent advances in high-throughput in silico techniques portray experimental data as exemplified biological networks and help us understand the role of individual proteins, interactions, and their biological functions. The objective of this study was to identify differentially expressed (DE) sperm and seminal plasma microRNAs (miRNAs) in high- and low-fertile Holstein bulls (four bulls per group), integrate miRNAs to their target genes, and categorize the target genes based on biological process predictions. Out of 84 bovine-specific, prioritized miRNAs analyzed by RT-PCR, 30 were differentially expressed in high-fertile sperm and seminal plasma compared to low-fertile sperm and seminal plasma, respectively (p ≤ 0.05, fold regulation ≥ 5 magnitudes). The expression levels of DE-miRNAs in sperm and seminal plasma followed a similar pattern. Highly scored integrated genes of DE-miRNAs predicted various biological and molecular functions, cellular process, and pathways. Further, analysis of the categorized genes showed association with pathways regulating sperm structure and function, fertilization, and embryo and placental development. In conclusion, highly DE-miRNAs in bovine sperm and seminal plasma could be used as a tool for predicting reproductive functions. Since the identified miRNA-mRNA interactions were mostly based on predictions from public databases, the causal regulations of miRNA-mRNA and the underlying mechanisms require further functional characterization in future studies.
Collapse
|
3
|
Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021; 12:753686. [PMID: 34858208 PMCID: PMC8632065 DOI: 10.3389/fphys.2021.753686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexandra E Peters
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jessie M Sutherland
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
4
|
Extracellular vesicles as a potential diagnostic tool in assisted reproduction. Curr Opin Obstet Gynecol 2021; 32:179-184. [PMID: 32205524 DOI: 10.1097/gco.0000000000000621] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Extracellular vesicles have emerged as a promising field of research for their potential to serve as biomarkers. In the pathophysiology of reproduction, they have attracted significant attention because of their diverse roles in gametogenesis and embryo-endometrial cross-talk. Advances in extracellular vesicle translational potential are herein reviewed with a particular focus in oocyte competence, semen quality diagnostics, embryo selection and detection of endometrial receptivity. RECENT FINDINGS Specific miRNAs present in follicular fluid-derived extracellular vesicles have been associated with follicle development and oocyte maturation. Some proteins known to regulate sperm function and capacitation such as glycodelin, and CRISP1 have been found as overrepresented in semen exosomes isolated from severe asthenozoospermic compared to normozoospermic men. In vitro developed human embryos can secrete extracellular vesicles whose propitiousness for preimplantation genetic testing is being increasingly investigated. Endometrial cell-derived extracellular vesicles recovered from uterine flushings might represent a reservoir of molecular markers potentially exploited for monitoring the endometrial status. SUMMARY Accumulated knowledge on extracellular vesicles deriving from endometrium, follicular fluid, embryos or male reproductive system may be translated to clinical practice to inform diagnostics in assisted reproduction technology (ART). Validation studies and technology developments are required to implement the profiling of extracellular vesicles as diagnostic tests in ART.
Collapse
|
5
|
Liu T, Hooda J, Atkinson JM, Whiteside TL, Oesterreich S, Lee AV. Exosomes in Breast Cancer - Mechanisms of Action and Clinical Potential. Mol Cancer Res 2021; 19:935-945. [PMID: 33627501 PMCID: PMC8178200 DOI: 10.1158/1541-7786.mcr-20-0952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EV) are a heterogeneous group of cell-derived membrane vesicles comprising apoptotic bodies, microvesicles, and small EVs also called as exosomes. Exosomes when initially identified were considered as a waste product but the advancement in research techniques have provided insight into the important roles of exosomes in cell-cell communication, various biological processes and diseases, including cancer. As an important component of EVs, exosomes contain various biomolecules such as miRNAs, lipids, and proteins that largely reflect the characteristics of their parent cells. Notably, cancer cells generate and secrete many more exosomes than normal cells. A growing body of evidence suggests that exosomes, as mediators of intercellular cross-talk, play a role in tumorigenesis, cancer cell invasion, angiogenesis, tumor microenvironment (TME) formation, and cancer metastasis. As we gain more insights into the association between exosomes and cancer, the potential of exosomes for clinical use is becoming more intriguing. This review is focused on the role of exosomes in breast cancer, in terms of breast cancer biology, mechanism of action, potential as biomarkers, and therapeutic opportunities.
Collapse
Affiliation(s)
- Tiantong Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- School of Medicine, Tsinghua University, Beijing, China
| | - Jagmohan Hooda
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Theresa L Whiteside
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Arslan MA, Avcı B, Tunçel ÖK, Asci R. Decreased prostate-specific membrane antigen levels in the seminal plasma of oligoasthenoteratozoospermic men. Andrologia 2020; 53:e13840. [PMID: 33108820 DOI: 10.1111/and.13840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a transmembrane glycoprotein with glutamate carboxypeptidase activity. However, its precise function in the prostate, prostasomes and seminal plasma with regard to male fertility remains unknown. This study was conducted to investigate the seminal plasma PSMA levels in fertile men and patients with oligoasthenoteratozoospermia (OAT) and to analyse its association with sperm parameters. Twenty fertile men and twenty patients admitted at the urology clinic of our institution with the diagnosis of OAT were included in the study. Following semen analysis, seminal plasma was isolated from semen ejaculates. PSMA concentrations in the seminal plasma were determined by ELISA. The correlations between seminal PSMA concentrations and semen parameters were statistically analysed. Seminal plasma PSMA concentration was significantly lower in OAT patients compared to fertile controls (p < .01). In fertile men, PSMA concentration was significantly correlated with the sperm concentration (r = -.481, p < .05), whereas in the patient group no statistically significant correlation was found between the sperm parameters and seminal PSMA level. This is the first study in the literature to investigate PSMA levels in the seminal plasma from infertile men. Decreased levels of seminal plasma PSMA might suggest a role for compromised prostasome function in the pathogenesis of OAT syndrome.
Collapse
Affiliation(s)
- Mehmet Alper Arslan
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Bahattin Avcı
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Özgür Korhan Tunçel
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ramazan Asci
- Department of Urology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Zhou W, Dimitriadis E. Secreted MicroRNA to Predict Embryo Implantation Outcome: From Research to Clinical Diagnostic Application. Front Cell Dev Biol 2020; 8:586510. [PMID: 33072767 PMCID: PMC7537741 DOI: 10.3389/fcell.2020.586510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is considered a leading cause of infertility and a significant bottleneck for in vitro fertilization (IVF) treatment. Confirmed factors that lead to implantation failure involve unhealthy embryos, unreceptive endometrium, and asynchronous development and communication between the two. The quality of embryos is further dependent on sperm parameters, oocyte quality, and early embryo development after fertilization. The extensive involvement of such different factors contributes to the variability of implantation potential across different menstrual cycles. An ideal approach to predict the implantation outcome should not compromise embryo implantation. The use of clinical material, including follicular fluid, cumulus cells, sperm, seminal exosomes, spent blastocyst culture medium, blood, and uterine fluid, that can be collected relatively non-invasively without compromising embryo implantation in a transfer cycle opens new perspectives for the diagnosis of embryo implantation potential. Compositional comparison of these samples between fertile women and women or couples with implantation failure has identified both quantitative and qualitative differences in the expression of microRNAs (miRs) that hold diagnostic potential for implantation failure. Here, we review current findings of secreted miRs that have been identified to potentially be useful in predicting implantation outcome using material that can be collected relatively non-invasively. Developing non-invasive biomarkers of implantation potential would have a major impact on implantation failure and infertility.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
8
|
Luo P, Mao K, Xu J, Wu F, Wang X, Wang S, Zhou M, Duan L, Tan Q, Ma G, Yang G, Du R, Huang H, Huang Q, Li Y, Guo M, Jin Y. Metabolic characteristics of large and small extracellular vesicles from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Extracell Vesicles 2020; 9:1790158. [PMID: 32944177 PMCID: PMC7480510 DOI: 10.1080/20013078.2020.1790158] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of tuberculosis pleural effusion (TPE) and malignancy pleural effusion (MPE) remain challenging. Although extracellular vesicles (EVs) have been confirmed as promising sources of disease biomarkers, little is known about the metabolite compositions of its subpopulations and their roles in the diagnosis of pleural effusion. Here, we performed metabolomics and lipidomics analysis to investigate the metabolite characteristics of two EV subpopulations derived from pleural effusion by differential ultracentrifugation, namely large EVs (lEVs, pelleted at 20,000 × g) and small EVs (sEVs, pelleted at 110,000 × g), and assessed their metabolite differences between tuberculosis and malignancy. A total of 579 metabolites, including amino acids, acylcarnitines, organic acids, steroids, amides and various lipid species, were detected. The results showed that the metabolic profiles of lEVs and sEVs overlapped with and difference from each other but significantly differed from those of pleural effusion. Additionally, different type of vesicles and pleural effusion showed unique metabolic enrichments. Furthermore, lEVs displayed more significant and larger metabolic alterations between the tuberculosis and malignancy groups, and their differential metabolites were more closely related to clinical parameters than those of sEV. Finally, a panel of four biomarker candidates, including phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3, in pleural lEVs was defined based on the comprehensive discovery and validation workflow. This panel showed high performance for distinguishing TPE and MPE, particularly in patients with delayed or missed diagnosis, such as the area under the receiver-operating characteristic curve (AUC) >0.95 in both sets. We conducted comprehensive metabolic profiling analysis of EVs, and further explored the metabolic reprogramming of tuberculosis and malignancy at the level of metabolites in lEVs and sEVs, providing insight into the mechanism of pleural effusion, and identifying novel biomarkers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaimin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangzhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ronghui Du
- Department of Respiratory and Critical Care Medicine, Wuhan Lung Hospital, Wuhan, Hubei, China
| | - Hai Huang
- Department of Respiratory and Critical Care Medicine, Wuhan Lung Hospital, Wuhan, Hubei, China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
9
|
Zhao DY, Qi QQ, Long X, Li X, Chen FX, Yu YB, Zuo XL. Ultrastructure of intestinal mucosa in diarrhea-predominant irritable bowel syndrome. Physiol Int 2019; 106:225-235. [PMID: 31560236 DOI: 10.1556/2060.106.2019.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Impaired intestinal barrier function has been demonstrated in the pathophysiology of diarrhea-predominant irritable bowel syndrome (IBS-D). This study aimed to describe the intestinal ultrastructural findings in the intestinal mucosal layer of IBS-D patients. METHODS In total, 10 healthy controls and 10 IBS-D patients were analyzed in this study. The mucosa of each patient's rectosigmoid colon was first assessed by confocal laser endomicroscopy (CLE); next, biopsied specimens of these sites were obtained. Intestinal tissues of IBS-D patients and healthy volunteers were examined to observe cellular changes by transmission electron microscopy (TEM). RESULTS CLE showed no visible epithelial damage or inflammatory changes in the colonic mucosa of IBS-D compared with healthy volunteers. On transmission electron microscopic examination, patients with IBS-D displayed a larger apical intercellular distance with a higher proportion of dilated (>20 nm) intercellular junctional complexes, which was indicative of impaired mucosal integrity. In addition, microvillus exfoliation, extracellular vesicle as well as increased presence of multivesicular bodies were visible in IBS-D patients. Single epithelial cells appeared necrotic, as characterized by cytoplasmic vacuolization, cytoplasmic swelling, and presence of autolysosome. A significant association between bowel habit, frequency of abdominal pain, and enlarged intercellular distance was found. CONCLUSION This study showed ultrastructural alterations in the architecture of intestinal epithelial cells and intercellular junctional complexes in IBS-D patients, potentially representing a pathophysiological mechanism in IBS-D.
Collapse
Affiliation(s)
- D-Y Zhao
- Department of Gastroenterology, Puyang Oilfield General Hospital, Puyang, P. R. China
| | - Q-Q Qi
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, P. R. China
| | - X Long
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, P. R. China
| | - X Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, P. R. China
| | - F-X Chen
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, P. R. China
| | - Y-B Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, P. R. China
| | - X-L Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, P. R. China
| |
Collapse
|
10
|
Dong L, Zieren RC, Wang Y, de Reijke TM, Xue W, Pienta KJ. Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer 2019; 1871:342-360. [DOI: 10.1016/j.bbcan.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/09/2023]
|
11
|
Crivelli B, Chlapanidas T, Perteghella S, Lucarelli E, Pascucci L, Brini AT, Ferrero I, Marazzi M, Pessina A, Torre ML. Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. J Control Release 2017; 262:104-117. [PMID: 28736264 DOI: 10.1016/j.jconrel.2017.07.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023]
Abstract
It has been demonstrated that the biological effector of mesenchymal stem/stromal cells (MSCs) is their secretome, which is composed of a heterogeneous pool of bioactive molecules, partially enclosed in extracellular vesicles (EVs). Therefore, the MSC secretome (including EVs) has been recently proposed as possible alternative to MSC therapy. The secretome can be considered as a protein-based biotechnological product, it is probably safer compared with living/cycling cells, it presents virtually lower tumorigenic risk, and it can be handled, stored and sterilized as an Active Pharmaceutical/Principle Ingredient (API). EVs retain some structural and technological analogies with synthetic drug delivery systems (DDS), even if their potential clinical application is also limited by the absence of reproducible/scalable isolation methods and Good Manufacturing Practice (GMP)-compliant procedures. Notably, EVs secreted by MSCs preserve some of their parental cell features such as homing, immunomodulatory and regenerative potential. This review focuses on MSCs and their EVs as APIs, as well as DDS, considering their ability to reach inflamed and damaged tissues and to prolong the release of encapsulated drugs. Special attention is devoted to the illustration of innovative therapeutic approaches in which nanomedicine is successfully combined with stem cell therapy, thus creating a novel class of "next generation drug delivery systems."
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Theodora Chlapanidas
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Luisa Pascucci
- Veterinary Medicine Department, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20100 Milan, Italy; I.R.C.C.S. Galeazzi Orthopedic Institute, Via Riccardo Galeazzi 4, 20161 Milan, Italy.
| | - Ivana Ferrero
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126 Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy.
| | - Mario Marazzi
- Tissue Therapy Unit, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, 20162 Milan, Italy.
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20100 Milan, Italy.
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | | |
Collapse
|
12
|
Robertson SA, Zhang B, Chan H, Sharkey DJ, Barry SC, Fullston T, Schjenken JE. MicroRNA regulation of immune events at conception. Mol Reprod Dev 2017; 84:914-925. [DOI: 10.1002/mrd.22823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sarah A. Robertson
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Bihong Zhang
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Honyueng Chan
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - David J. Sharkey
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Simon C. Barry
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - Tod Fullston
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| | - John E. Schjenken
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSAAustralia
| |
Collapse
|
13
|
Perteghella S, Crivelli B, Catenacci L, Sorrenti M, Bruni G, Necchi V, Vigani B, Sorlini M, Torre ML, Chlapanidas T. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int J Pharm 2017; 520:86-97. [PMID: 28163224 DOI: 10.1016/j.ijpharm.2017.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 01/30/2023]
Abstract
The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells.
Collapse
Affiliation(s)
- Sara Perteghella
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Barbara Crivelli
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Laura Catenacci
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Milena Sorrenti
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Giovanna Bruni
- University of Pavia, Department of Chemistry, Viale Taramelli 16, 27100 Pavia, Italy.
| | - Vittorio Necchi
- University of Pavia, Department of Molecular Medicine, Via Forlanini 6, 27100 Pavia, Italy; University of Pavia, Centro Grandi Strumenti, Via Bassi 21, 27100 Pavia, Italy.
| | - Barbara Vigani
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Marzio Sorlini
- SUPSI, University of Applied Sciences and Arts of Southern Switzerland, Innovative Technologies Department, Via Pobiette 11, 6928 Manno, Switzerland.
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Theodora Chlapanidas
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
14
|
Hyde KJ, Schust DJ. Immunologic challenges of human reproduction: an evolving story. Fertil Steril 2016; 106:499-510. [PMID: 27477190 DOI: 10.1016/j.fertnstert.2016.07.1073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Characterization of the implanting human fetus as an allograft prompted a field of research in reproductive immunology that continues to fascinate and perplex scientists. Paternal- or partner-derived alloantigens are present in the maternal host at multiple times during the reproductive process. They begin with exposure to semen, continue through implantation and placentation, and may persist for decades in the form of fetal microchimerism. Changes in maternal immune responses that allow allogenic fertilization and survival of semiallogenic concepti to delivery must be balanced with a continued need to respond appropriately to pathogenic invaders, commensals, cell or tissue damage, and any tendency toward malignant transformation. This complex and sophisticated balancing act is essential for survival of mother, fetus, and the species itself. We will discuss concepts of alloimmune recognition, tolerance, and ignorance as they pertain to mammalian reproduction with a focus on human reproduction, maternal immune modulation, and the very earliest events in the reproductive process, fertilization and implantation.
Collapse
Affiliation(s)
- Kassie J Hyde
- University of Missouri School of Medicine, Columbia, Missouri
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri.
| |
Collapse
|
15
|
|
16
|
Schjenken JE, Zhang B, Chan HY, Sharkey DJ, Fullston T, Robertson SA. miRNA Regulation of Immune Tolerance in Early Pregnancy. Am J Reprod Immunol 2016; 75:272-80. [PMID: 26804209 DOI: 10.1111/aji.12490] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/25/2015] [Indexed: 12/29/2022] Open
Abstract
To support embryo implantation, the female reproductive tract must provide a tolerogenic immune environment. Seminal fluid contact at conception contributes to activating the endometrial gene expression and immune cell changes required for robust implantation, influencing not only the quality of the ensuing pregnancy but also the health of offspring. miRNAs are small non-coding RNAs that play important regulatory roles in biological processes, including regulation of the immune environment. miRNAs are known to contribute to gene regulation in pregnancy and are altered in pregnancy pathologies. Recent studies indicate that miRNAs participate in establishing immune tolerance at conception, and may contribute to the regulatory effects of seminal fluid in generating tolerogenic dendritic cells and T regulatory cells. This review highlights those miRNAs implicated in programming immune cells that are critical during the peri-conception period and explores how seminal fluid may regulate female tract miRNA expression following coitus.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Bihong Zhang
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Hon Y Chan
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - David J Sharkey
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Tod Fullston
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Nassar W, El-Ansary M, Fayyad T, Aziz MA. Extracellular Micro-RNAs in Health and Disease: Basic Science, Biogenesis and Release. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajmb.2016.61001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Lakhter AJ, Sims EK. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Mol Endocrinol 2015; 29:1535-48. [PMID: 26393296 PMCID: PMC4627606 DOI: 10.1210/me.2015-1206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| | - Emily K Sims
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|
19
|
New players in Trousseau syndrome. Blood 2015; 126:1270-2. [DOI: 10.1182/blood-2015-07-657932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|