1
|
Singh D, Prasad S. A Pioneer Review on Lactoferrin-Conjugated Extracellular Nanovesicles for Targeting Cellular Melanoma: Recent Advancements and Future Prospects. Assay Drug Dev Technol 2025; 23:55-69. [PMID: 39654517 DOI: 10.1089/adt.2024.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Melanoma, a highly aggressive form of skin cancer, presents a formidable challenge in terms of treatment due to its propensity for metastasis and resistance to conventional therapies. The development of innovative nanocarriers for targeted drug delivery has opened new avenues in cancer therapy. Lactoferrin-conjugated extracellular nanovesicles (LF-EVs) have emerged as a promising vehicle in the targeted treatment of cellular melanoma, owing to their natural biocompatibility, enhanced bioavailability, and ability to traverse biological barriers effectively. This review synthesizes recent advancements in the use of LF-EVs as a novel drug delivery system for melanoma, emphasizing their unique capacity to enhance cellular uptake through LF's receptor-mediated endocytosis pathways. Key studies demonstrate that LF conjugation significantly increases the specificity of extracellular nanovesicles for melanoma cells, minimizes off-target effects, and promotes efficient intracellular drug release. Furthermore, we explore how LF-EVs interact with the tumor microenvironment, potentially inhibiting melanoma progression and metastasis while supporting antitumor immune responses. Future prospects in this field include optimizing LF conjugation techniques, improving the scalability of LF-EV production, and integrating multifunctional payloads to target drug resistance mechanisms. This review highlights the potential of LF-EVs to transform melanoma treatment strategies, bridging current gaps in therapeutic delivery and paving the way for personalized and less invasive melanoma therapies.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Sonima Prasad
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Mousavikia SN, Darvish L, Bahreyni Toossi MT, Azimian H. Exosomes: Their role in the diagnosis, progression, metastasis, and treatment of glioblastoma. Life Sci 2024; 350:122743. [PMID: 38806071 DOI: 10.1016/j.lfs.2024.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Darvish
- Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Yang LY, Li CQ, Zhang YL, Ma MW, Cheng W, Zhang GJ. Emerging Drug Delivery Vectors: Engineering of Plant-Derived Nanovesicles and Their Applications in Biomedicine. Int J Nanomedicine 2024; 19:2591-2610. [PMID: 38505167 PMCID: PMC10949304 DOI: 10.2147/ijn.s454794] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular vesicles can transmit intercellular information and transport biomolecules to recipient cells during various pathophysiological processes in the organism. Animal cell exosomes have been identified as potential nanodrugs delivery vehicles, yet they have some shortcomings such as high immunogenicity, high cytotoxicity, and complicated preparation procedures. In addition to exosomes, plant-derived extracellular vesicles (PDVs), which carry a variety of active substances, are another promising nano-transport vehicles emerging in recent years due to their stable physicochemical properties, wide source, and low cost. This work briefly introduces the collection and characterization of PDVs, then focuses on the application of PDVs as natural or engineered drug carriers in biomedicine, and finally discusses the development and challenges of PDVs in future applications.
Collapse
Affiliation(s)
- Lu-Yao Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Chao-Qing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Yu-Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Wan Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| |
Collapse
|
4
|
Kink JA, Bellio MA, Forsberg MH, Lobo A, Thickens AS, Lewis BM, Ong IM, Khan A, Capitini CM, Hematti P. Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome. Stem Cell Res Ther 2024; 15:72. [PMID: 38475968 DOI: 10.1186/s13287-024-03688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. METHODS EVs were isolated by ultracentrifugation from unprimed and lipopolysaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. RESULTS Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. CONCLUSIONS LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.
Collapse
Affiliation(s)
- John A Kink
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Matthew H Forsberg
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Alexandra Lobo
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Anna S Thickens
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Bryson M Lewis
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christian M Capitini
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA.
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, 1111 Highland Ave, WIMR 4137, Madison, WI, USA.
- Medical College of Wisconsin, 9200 W. Wisconsin Ave, Milwaukee, WI, 53326, USA.
| |
Collapse
|
5
|
Mut M, Adiguzel Z, Cakir-Aktas C, Hanalioğlu Ş, Gungor-Topcu G, Kiyga E, Isikay I, Sarac A, Soylemezoglu F, Strobel T, Ampudia-Mesias E, Cameron C, Aslan T, Tekirdas E, Hayran M, Oguz KK, Henzler C, Saydam N, Saydam O. Extracellular-Vesicle-Based Cancer Panels Diagnose Glioblastomas with High Sensitivity and Specificity. Cancers (Basel) 2023; 15:3782. [PMID: 37568598 PMCID: PMC10417317 DOI: 10.3390/cancers15153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma is one of the most devastating neoplasms of the central nervous system. This study focused on the development of serum extracellular vesicle (EV)-based glioblastoma tumor marker panels that can be used in a clinic to diagnose glioblastomas and to monitor tumor burden, progression, and regression in response to treatment. RNA sequencing studies were performed using RNA isolated from serum EVs from both patients (n = 85) and control donors (n = 31). RNA sequencing results for preoperative glioblastoma EVs compared to control EVs revealed 569 differentially expressed genes (DEGs, 2XFC, FDR < 0.05). By using these DEGs, we developed serum-EV-based biomarker panels for the following glioblastomas: wild-type IDH1 (96% sensitivity/80% specificity), MGMT promoter methylation (91% sensitivity/73% specificity), p53 gene mutation (100% sensitivity/89% specificity), and TERT promoter mutation (89% sensitivity/100% specificity). This is the first study showing that serum-EV-based biomarker panels can be used to diagnose glioblastomas with a high sensitivity and specificity.
Collapse
Affiliation(s)
- Melike Mut
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06230, Turkey;
| | - Zelal Adiguzel
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
- Faculty of Medicine KUTTAM, Koç University, Davutpaşa Street No. 4 Topkapi, Istanbul 34010, Turkey
| | - Canan Cakir-Aktas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara 06230, Turkey;
| | - Şahin Hanalioğlu
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Gamze Gungor-Topcu
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
| | - Ezgi Kiyga
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
| | - Ilkay Isikay
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Aydan Sarac
- TUBİTAK, GEBI, Gebze, Kocaeli 41470, Turkey; (Z.A.); (G.G.-T.); (E.K.); (A.S.)
| | - Figen Soylemezoglu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
| | - Thomas Strobel
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (E.A.-M.); (C.C.)
| | - Charles Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (E.A.-M.); (C.C.)
| | - Tulay Aslan
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Eray Tekirdas
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey; (Ş.H.); (I.I.); (T.A.); (E.T.)
| | - Mutlu Hayran
- Department of Preventive Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey;
| | - Kader Karli Oguz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
| | - Christine Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; (E.A.-M.); (C.C.)
| |
Collapse
|
6
|
Xu Z, Xu Y, Zhang K, Liu Y, Liang Q, Thakur A, Liu W, Yan Y. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J Nanobiotechnology 2023; 21:114. [PMID: 36978093 PMCID: PMC10049910 DOI: 10.1186/s12951-023-01858-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The past few years have witnessed a significant increase in research related to plant-derived extracellular vesicles (PDEVs) in biological and medical applications. Using biochemical technologies, multiple independent groups have demonstrated the important roles of PDEVs as potential mediators involved in cell-cell communication and the exchange of bio-information between species. Recently, several contents have been well identified in PDEVs, including nucleic acids, proteins, lipids, and other active substances. These cargoes carried by PDEVs could be transferred into recipient cells and remarkably influence their biological behaviors associated with human diseases, such as cancers and inflammatory diseases. This review summarizes the latest updates regarding PDEVs and focuses on its important role in nanomedicine applications, as well as the potential of PDEVs as drug delivery strategies to develop diagnostic and therapeutic agents for the clinical management of diseases, especially like cancers. CONCLUSION Considering its unique advantages, especially high stability, intrinsic bioactivity and easy absorption, further elaboration on molecular mechanisms and biological factors driving the function of PDEVs will provide new horizons for the treatment of human disease.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan, 421001, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
7
|
Orefice NS, Di Raimo R, Mizzoni D, Logozzi M, Fais S. Purposing plant-derived exosomes-like nanovesicles for drug delivery: patents and literature review. Expert Opin Ther Pat 2023; 33:89-100. [PMID: 36947052 DOI: 10.1080/13543776.2023.2195093] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION How can biotechnology and organic agriculture be fused and promoted simultaneously to overcome the main challenges in drug delivery systems, improving the quality of the care provided, [1] patient outcomes, and [2] reducing the side effects of most of the current treatments? Unfortunately, the role of organic agriculture in future human health treatment still represents a binary organic-conventional question, a debate perpetuating an either/or mentality. However, extracellular exosomes-like nanoparticles define a new organic path that plants and vegetables can release. In this review, we concisely propose plant-derived exosome-like nanovesicles and discuss their most important biological and pharmacological roles, representing a new tool for drug delivery. AREAS COVERED plant-derived exosomes-like nanovesicles; nature farming; green manufacturing practice; drug delivery; organic agriculture. EXPERT OPINION There is growing interest in the potential use of plant-derived exosomes-like nanovesicles for various diagnostic and therapeutic applications that should translate into a supplement to current nano-pharmaceuticals. Despite their clinical potential, the lack of sensitive preparatory and analytical technologies for plant-derived exosomes-like nanovesicles poses a barrier to clinical translation. An increasing number of articles are recently published on new analytical platforms to address these challenges in cross-comparison with conventional assay methods. This review also mentions two patents from ExoLab-Italia on plant-derived exosome-like nanovesicles, respectively, on plant-derived exosome-like nanovesicles' ability to naturally deliver a series of potentially therapeutic molecules and a novel approach to upload them with therapeutic molecules.
Collapse
Affiliation(s)
- Nicola Salvatore Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rossella Di Raimo
- ExoLab Italia, Tecnopolo d'Abruzzo, Strada Statale 17 Loc. Boschetto di Pile, 67100 L'Aquila, Italy
| | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d'Abruzzo, Strada Statale 17 Loc. Boschetto di Pile, 67100 L'Aquila, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
Trentini M, Zanolla I, Zanotti F, Tiengo E, Licastro D, Dal Monego S, Lovatti L, Zavan B. Apple Derived Exosomes Improve Collagen Type I Production and Decrease MMPs during Aging of the Skin through Downregulation of the NF-κB Pathway as Mode of Action. Cells 2022; 11:3950. [PMID: 36552714 PMCID: PMC9776931 DOI: 10.3390/cells11243950] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.
Collapse
Affiliation(s)
- Martina Trentini
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Zanolla
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Zanotti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tiengo
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Luca Lovatti
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Barbara Zavan
- Department Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Felker G, Buttrick P, Rosenzweig A, Abel ED, Allen LA, Bristow M, Das S, DeVore AD, Drakos SG, Fang JC, Freedman JE, Hernandez AF, Li DY, McKinsey TA, Newton‐Cheh C, Rogers JG, Shah RV, Shah SH, Stehlik J, Selzman CH. Heart Failure Strategically Focused Research Network: Summary of Results and Future Directions. J Am Heart Assoc 2022; 11:e025517. [PMID: 36073647 PMCID: PMC9683647 DOI: 10.1161/jaha.122.025517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
Heart failure remains among the most common and morbid health conditions. The Heart Failure Strategically Focused Research Network (HF SFRN) was funded by the American Heart Association to facilitate collaborative, high-impact research in the field of heart failure across the domains of basic, clinical, and population research. The Network was also charged with developing training opportunities for young investigators. Four centers were funded in 2016: Duke University, University of Colorado, University of Utah, and Massachusetts General Hospital-University of Massachusetts. This report summarizes the aims of each center and major research accomplishments, as well as training outcomes from the HF SFRN.
Collapse
Affiliation(s)
- G.Michael Felker
- Division of CardiologyDuke University School of Medicine and Duke Clinical Research InstituteDurhamNC
| | - Peter Buttrick
- Division of CardiologyUniversity of Colorado School of MedicineAuroraCO
| | | | - E. Dale Abel
- Department of MedicineUCLA School of MedicineLos AngelesCA
| | - Larry A. Allen
- Division of CardiologyUniversity of Colorado School of MedicineAuroraCO
| | - Michael Bristow
- Division of CardiologyUniversity of Colorado School of MedicineAuroraCO
| | - Saumya Das
- Division of CardiologyMassachusetts General HospitalBostonMA
| | - Adam D. DeVore
- Division of CardiologyDuke University School of Medicine and Duke Clinical Research InstituteDurhamNC
| | - Stavros G. Drakos
- Division of CardiologyUniversity of Utah School of MedicineSalt Lake CityUT
| | - James C. Fang
- Division of CardiologyUniversity of Utah School of MedicineSalt Lake CityUT
| | - Jane E. Freedman
- Division of CardiologyVanderbilt University School of MedicineNashvilleTN
| | - Adrian F. Hernandez
- Division of CardiologyDuke University School of Medicine and Duke Clinical Research InstituteDurhamNC
| | | | | | | | | | - Ravi V. Shah
- Division of CardiologyVanderbilt University School of MedicineNashvilleTN
| | - Svati H. Shah
- Division of CardiologyDuke University School of Medicine and Duke Clinical Research InstituteDurhamNC
| | - Josef Stehlik
- Division of CardiologyUniversity of Utah School of MedicineSalt Lake CityUT
| | - Craig H. Selzman
- Division of CardiologyUniversity of Utah School of MedicineSalt Lake CityUT
| |
Collapse
|
10
|
The Potentiality of Plant-Derived Nanovesicles in Human Health-A Comparison with Human Exosomes and Artificial Nanoparticles. Int J Mol Sci 2022; 23:ijms23094919. [PMID: 35563310 PMCID: PMC9101147 DOI: 10.3390/ijms23094919] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Research in science and medicine is witnessing a massive increases in literature concerning extracellular vesicles (EVs). From a morphological point of view, EVs include extracellular vesicles of a micro and nano sizes. However, this simplistic classification does not consider both the source of EVs, including the cells and the species from which Evs are obtained, and the microenvironmental condition during EV production. These two factors are of crucial importance for the potential use of Evs as therapeutic agents. In fact, the choice of the most suitable Evs for drug delivery remains an open debate, inasmuch as the use of Evs of human origin may have at least two major problems: (i) autologous Evs from a patient may deliver dangerous molecules; and (ii) the production of EVs is also limited to cell factory conditions for large-scale industrial use. Recent literature, while limited to only a few papers, when compared to the papers on the use of human EVs, suggests that plant-derived nanovesicles (PDNV) may represent a valuable tool for extensive use in health care.
Collapse
|
11
|
Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021; 10:cells10030486. [PMID: 33668388 PMCID: PMC7996359 DOI: 10.3390/cells10030486] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Ginseng is a traditional herbal medicine in eastern Asian countries. Most active constituents in ginseng are prepared via fermentation or organic acid pretreatment. Extracellular vesicles (EVs) are released by most organisms from prokaryotes to eukaryotes and play central roles in intra- and inter-species communications. Plants produce EVs upon exposure to microbes; however, their direct functions and utility for human health are barely known, except for being proposed as delivery vehicles. In this study, we isolated EVs from ginseng roots (GrEVs) or the culture supernatants of ginseng cells (GcEVs) derived from Panax ginseng C.A. Meyer and investigated their biological effects on human skin cells. GrEV or GcEV treatments improved the replicative senescent or senescence-associated pigmented phenotypes of human dermal fibroblasts or ultraviolet B radiation-treated human melanocytes, respectively, by downregulating senescence-associated molecules and/or melanogenesis-related proteins. Based on comprehensive lipidomic analysis using liquid chromatography mass spectrometry, the lipidomic profile of GrEVs differed from that of the parental root extracts, showing significant increases in 70 of 188 identified lipid species and prominent increases in diacylglycerols, some phospholipids (phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine), and sphingomyelin, revealing their unique vesicular properties. Therefore, our results imply that GEVs represent a novel type of bioactive and sustainable nanomaterials that can be applied to human tissues for improving tissue conditions and targeted delivery of active constituents.
Collapse
|
12
|
Di Gioia S, Hossain MN, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020; 15:1096-1122. [PMID: 33336066 PMCID: PMC7718644 DOI: 10.1515/med-2020-0160] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes-like nanoparticles can be released by a variety of plants and vegetables. The relevance of plant-derived nanovesicles (PDNVs) in interspecies communication is derived from their content in biomolecules (lipids, proteins, and miRNAs), absence of toxicity, easy internalization by mammalian cells, as well as for their anti-inflammatory, immunomodulatory, and regenerative properties. Due to these interesting features, we review here their potential application in the treatment of inflammatory bowel disease (IBD), liver diseases, and cancer as well as their potentiality as drug carriers. Current evidence indicate that PDNVs can improve the disease state at the level of intestine in IBD mouse models by affecting inflammation and promoting prohealing effects. While few reports suggest that anticancer effects can be derived from antiproliferative and immunomodulatory properties of PDNVs, other studies have shown that PDNVs can be used as effective delivery systems for small molecule agents and nucleic acids with therapeutic effects (siRNAs, miRNAs, and DNAs). Finally, since PDNVs are characterized by a proven stability in the gastrointestinal tract, they have been considered as promising delivery systems for natural products contained therein and drugs (including nucleic acids) via the oral route.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Yu L, Deng Z, Liu L, Zhang W, Wang C. Plant-Derived Nanovesicles: A Novel Form of Nanomedicine. Front Bioeng Biotechnol 2020; 8:584391. [PMID: 33154966 PMCID: PMC7591720 DOI: 10.3389/fbioe.2020.584391] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nanovesicles extracted from the plant and herbal decoctions are identified as a new class of nanomedicine. They are involved in interspecies chemical communication across the plant and animal kingdoms and display a therapeutic potential against a variety of diseases. Herein, we review the recent progress made in the medical applications of plant-derived nanovesicles in the aspects of anti-inflammation, anti-cancer, tissue regeneration, and modulating commensal microbiota. We further summarize the cellular and molecular mechanisms underlying the physiological functions of plant-derived nanovesicles. Overall, plant-derived nanovesicles provide an alternative to conventional synthetic drugs and present exciting opportunities for future research on disease therapy.
Collapse
Affiliation(s)
- Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhun Deng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020; 21:585-606. [PMID: 32457507 PMCID: PMC7249041 DOI: 10.1038/s41580-020-0251-y] [Citation(s) in RCA: 1160] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.
Collapse
Affiliation(s)
- Killian O'Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Quijano LM, Naranjo JD, El-Mossier SO, Turner NJ, Pineda Molina C, Bartolacci J, Zhang L, White L, Li H, Badylak SF. Matrix-Bound Nanovesicles: The Effects of Isolation Method upon Yield, Purity, and Function. Tissue Eng Part C Methods 2020; 26:528-540. [PMID: 33012221 PMCID: PMC7869881 DOI: 10.1089/ten.tec.2020.0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Identification of matrix-bound nanovesicles (MBV) as ubiquitous components of the extracellular matrix (ECM) raises questions regarding their biologic functions and their potential theranostic application. Unlike liquid-phase extracellular vesicles (e.g., exosomes), MBV are tightly bound to the ECM, which makes their isolation and harvesting more challenging. The indiscriminate use of different methods to harvest MBV can alter or disrupt their structural and/or functional integrity. The objective of the present study was to compare the effect of various MBV harvesting methods upon yield, purity, and biologic activity. Combinations of four methods to solubilize the ECM (collagenase [COL], liberase [LIB], or proteinase K [PK] and nonenzymatic elution with potassium chloride) and four isolation methods (ultracentrifugation, ultrafiltration [UF], density barrier, and size exclusion chromatography [SEC]) were used to isolate MBV from urinary bladder-derived ECM. All combinations of solubilization and isolation methods allowed for the harvesting of MBV, however, distinct differences were noted. The highest yield, purity, cellular uptake, and biologic activity were seen with MBV isolated by a combination of liberase or collagenase followed by SEC. The combination of proteinase K and UF was shown to have detrimental effects on bioactivity. The results show the importance of selecting appropriate MBV harvesting methods for the characterization and evaluation of MBV and for analysis of their potential theranostic application. Impact statement Identification of matrix-bound nanovesicles (MBV) as ubiquitous components of the extracellular matrix (ECM) has raised questions regarding their biologic functions and their potential theranostic application. This study demonstrates that the harvesting methods used can result in samples with physical and biochemical properties that are unique to the isolation and solubilization methods used. Consequently, developing harvesting methods that minimize sample contamination with ECM remnants and/or solubilization agents will be essential in determining the theranostic potential of MBV in future studies.
Collapse
Affiliation(s)
- Lina M. Quijano
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Juan D. Naranjo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Salma O. El-Mossier
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Catalina Pineda Molina
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph Bartolacci
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Zhang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa White
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Hui Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Advances in colon-targeted nano-drug delivery systems: challenges and solutions. Arch Pharm Res 2020; 43:153-169. [DOI: 10.1007/s12272-020-01219-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
|
17
|
Extracellular Vesicles in Modifying the Effects of Ionizing Radiation. Int J Mol Sci 2019; 20:ijms20225527. [PMID: 31698689 PMCID: PMC6888126 DOI: 10.3390/ijms20225527] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coated nanovesicles actively secreted by almost all cell types. EVs can travel long distances within the body, being finally taken up by the target cells, transferring information from one cell to another, thus influencing their behavior. The cargo of EVs comprises of nucleic acids, lipids, and proteins derived from the cell of origin, thereby it is cell-type specific; moreover, it differs between diseased and normal cells. Several studies have shown that EVs have a role in tumor formation and prognosis. It was also demonstrated that ionizing radiation can alter the cargo of EVs. EVs, in turn can modulate radiation responses and they play a role in radiation-induced bystander effects. Due to their biocompatibility and selective targeting, EVs are suitable nanocarrier candidates of drugs in various diseases, including cancer. Furthermore, the cargo of EVs can be engineered, and in this way they can be designed to carry certain genes or even drugs, similar to synthetic nanoparticles. In this review, we describe the biological characteristics of EVs, focusing on the recent efforts to use EVs as nanocarriers in oncology, the effects of EVs in radiation therapy, highlighting the possibilities to use EVs as nanocarriers to modulate radiation effects in clinical applications.
Collapse
|
18
|
Mardpour S, Hassani S, Mardpour S, Sayahpour F, Vosough M, Ai J, Aghdami N, Hamidieh AA, Baharvand H. Extracellular vesicles derived from human embryonic stem cell‐MSCs ameliorate cirrhosis in thioacetamide‐induced chronic liver injury. J Cell Physiol 2018; 233:9330-9344. [DOI: 10.1002/jcp.26413] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Various somatic tissue‐derived mesenchymal stromal cells (MSCs) have been considered as an attractive therapeutic tool for treatment of liver diseases in which the secretion of soluble factors or extracellular vesicles (EVs) is the most probable mechanism. The experimental application of human embryonic stem cell‐derived MSC (ES‐MSC) increased rapidly and showed promising results, in vitro and in vivo. However, possible therapeutic effects of human ES‐MSC and their EVs on Thioacetamide (TAA)‐induced chronic liver injury have not been evaluated yet. Our data indicated that human ES‐MSC can significantly suppress the proliferation of peripheral blood mononuclear cells compared to bone marrow (BM)‐MSC and adipose (AD)‐MSC. Moreover, ES‐MSC increased the secretion of anti‐inflammatory cytokines (i.e., TGF‐β and IL‐10) and decreased IFN‐γ, compared to other MSCs. ES‐MSC EVs demonstrated immunomodulatory activities comparable to parental cells and ameliorated cirrhosis in TAA‐induced chronic rat liver injury, that is, reduction in fibrosis and collagen density, necrosis, caspase density, portal vein diameter, and transaminitis. The gene expression analyses also showed upregulation in collagenases (MMP9 and MMP13), anti‐apoptotic gene (BCL‐2) and anti‐inflammatory cytokines (TGF‐β1 and IL‐10) and down‐regulation of major contributors to fibrosis (Col1α, αSMA, and TIMP1), pro‐apoptotic gene (BAX) and pro‐inflammatory cytokines (TNFα and IL‐2) following treatment with ES‐MSC and ES‐MSC‐EV. These results demonstrated that human ES‐MSC and ES‐MSC EV as an off‐the‐shelf product, that needs further assessment to be suggested as an allogeneic product for therapeutic applications for liver fibrosis.
Collapse
Affiliation(s)
- Soura Mardpour
- Tissue engineering and Applied Cell Sciences Department School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Seyedeh‐Nafiseh Hassani
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | | | - Forough Sayahpour
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Jafar Ai
- Tissue engineering and Applied Cell Sciences Department School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department Children's Medical Center Tehran University of Medical Sciences Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
- Department of Developmental Biology University of Science and Culture Tehran Iran
| |
Collapse
|
19
|
Daily rhythms influence the ability of lung-derived extracellular vesicles to modulate bone marrow cell phenotype. PLoS One 2018; 13:e0207444. [PMID: 30475846 PMCID: PMC6261033 DOI: 10.1371/journal.pone.0207444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication and have been implicated in myriad physiologic and pathologic processes within the hematopoietic system. Numerous factors influence the ability of EVs to communicate with target marrow cells, but little is known about how circadian oscillations alter EV function. In order to explore the effects of daily rhythms on EV-mediated intercellular communication, we used a well-established model of lung-derived EV modulation of the marrow cell transcriptome. In this model, co-culture of whole bone marrow cells (WBM) with lung-derived EVs induces expression of pulmonary specific mRNAs in the target WBM. To determine if daily rhythms play a role in this phenotype modulation, C57BL/6 mice were entrained in 12-hour light/12-hour dark boxes. Lungs harvested at discrete time-points throughout the 24-hour cycle were co-cultured across a cell-impermeable membrane with murine WBM. Alternatively, WBM harvested at discrete time-points was co-cultured with lung-derived EVs. Target WBM was collected 24hrs after co-culture and analyzed for the presence of pulmonary specific mRNA levels by RT-PCR. In both cases, there were clear time-dependent variations in the patterns of pulmonary specific mRNA levels when either the daily time-point of the lung donor or the daily time-point of the recipient marrow cells was altered. In general, WBM had peak pulmonary-specific mRNA levels when exposed to lung harvested at Zeitgeber time (ZT) 4 and ZT 16 (ZT 0 defined as the time of lights on, ZT 12 defined as the time of lights off), and was most susceptible to lung-derived EV modulation when target marrow itself was harvested at ZT 8- ZT 12. We found increased uptake of EVs when the time-point of the receptor WBM was between ZT 20 -ZT 24, suggesting that the time of day-dependent changes in transcriptome modulation by the EVs were not due simply to differential EV uptake. Based on these data, we conclude that circadian rhythms can modulate EV-mediated intercellular communication.
Collapse
|
20
|
Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci Rep 2018; 8:14644. [PMID: 30279553 PMCID: PMC6168523 DOI: 10.1038/s41598-018-32953-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022] Open
Abstract
Exosomes have shown increasing potential as delivery vesicles for therapy, but challenges like cost/yield, drug payload, and targeting specificity still exist. Plant derived exosome-like nanoparticles have been reported as a promising substitution and exhibit biocompatibility through oral, intranasal administration; however, systemic delivery of siRNA by exosome-like nanoparticles directly isolated from plants has not been reported. Recently, we reported the control of RNA orientation to decorate human derived exosome with cell targeting ligands for specific delivery of siRNA to tumors. Here, we expand to the application of arrowtail RNA nanoparticles for displaying ligands on ginger derived exosome-like nanovesicles (GDENs) for siRNA delivery and tumor inhibition through IV administration. Cushion ultracentrifugation coupled with equilibrium density gradient ultracentrifugation were used for purifying GDENs that displayed size, density, and morphology similar to human derived exosomes. Folic acid (FA), as a ligand, was displayed on the surface of GDENs for targeted delivery of survivin siRNA to KB cancer models. In vitro gene knockdown efficacy by FA-3WJ/GDENs/siRNA complex was comparable to transfection. We observed inhibition of tumor growth on a xenograft model by intravenous administration, which reveals the potential of GDENs as an economic delivery system for siRNA.
Collapse
Affiliation(s)
- Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Chad Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Huang-Ge Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Ferruelo A, Peñuelas Ó, Lorente JA. MicroRNAs as biomarkers of acute lung injury. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:34. [PMID: 29430451 DOI: 10.21037/atm.2018.01.10] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a common and complex inflammatory lung diseases affecting critically ill patients requiring mechanical ventilation. MicroRNAs (miRNAs), a novel pathway of non-coding RNA molecules that regulate gene expression at the post-transcriptional level, have emerged as a novel class of gene expression, and can play important roles in inflammation or apoptosis, which are common manifestations of ARDS and diffuse alveolar damage (DAD). In the present review, we discuss the role of miRNAs as biomarkers of ARDS and DAD, and their potential use as therapeutic targets for this condition.
Collapse
Affiliation(s)
- Antonio Ferruelo
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Óscar Peñuelas
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| | - José A Lorente
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Department of Medicine, Universidad Europea, Madrid, Spain
| |
Collapse
|
22
|
Xi X, Li T, Huang Y, Sun J, Zhu Y, Yang Y, Lu ZJ. RNA Biomarkers: Frontier of Precision Medicine for Cancer. Noncoding RNA 2017; 3:ncrna3010009. [PMID: 29657281 PMCID: PMC5832009 DOI: 10.3390/ncrna3010009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
As an essential part of central dogma, RNA delivers genetic and regulatory information and reflects cellular states. Based on high-throughput sequencing technologies, cumulating data show that various RNA molecules are able to serve as biomarkers for the diagnosis and prognosis of various diseases, for instance, cancer. In particular, detectable in various bio-fluids, such as serum, saliva and urine, extracellular RNAs (exRNAs) are emerging as non-invasive biomarkers for earlier cancer diagnosis, tumor progression monitor, and prediction of therapy response. In this review, we summarize the latest studies on various types of RNA biomarkers, especially extracellular RNAs, in cancer diagnosis and prognosis, and illustrate several well-known RNA biomarkers of clinical utility. In addition, we describe and discuss general procedures and issues in investigating exRNA biomarkers, and perspectives on utility of exRNAs in precision medicine.
Collapse
Affiliation(s)
- Xiaochen Xi
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Tianxiao Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yiming Huang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jiahui Sun
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yumin Zhu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yang Yang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Extracellular vesicles in renal tissue damage and regeneration. Eur J Pharmacol 2016; 790:83-91. [PMID: 27375075 DOI: 10.1016/j.ejphar.2016.06.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/10/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) appear as important actors in cell-to-cell communication. EV content is characterized by proteins and RNA species that dynamically reflect cell and tissue state. Urinary EVs in particular may act in inter-nephron communication with possible beneficial or detrimental effects. Increasing interest is addressed to the pharmacological properties of EVs as a cell-free therapy, since several of the effects crAQ/tgqcedited to stem cells have been recapitulated by administration of their EVs. Preclinical data in models of renal damage indicate a general regenerative potential of EVs derived from mesenchymal stromal cells of different sources, including bone marrow, fetal tissues, urine and kidney. In this review we will discuss the results on the effect of EVs in repair of acute and chronic renal injury, and the mechanisms involved. In addition, we will analyse the strategies for EV pharmacological applications in renal regenerative medicine and limits and benefits involved.
Collapse
|
24
|
Higginbotham JN, Zhang Q, Jeppesen DK, Scott AM, Manning HC, Ochieng J, Franklin JL, Coffey RJ. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J Extracell Vesicles 2016; 5:29254. [PMID: 27345057 PMCID: PMC4921784 DOI: 10.3402/jev.v5.29254] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Exosomes are small, 40–130 nm secreted extracellular vesicles that recently have become the subject of intense focus as agents of intercellular communication, disease biomarkers and potential vehicles for drug delivery. It is currently unknown whether a cell produces different populations of exosomes with distinct cargo and separable functions. To address this question, high-resolution methods are needed. Using a commercial flow cytometer and directly labelled fluorescent antibodies, we show the feasibility of using fluorescence-activated vesicle sorting (FAVS) to analyse and sort individual exosomes isolated by sequential ultracentrifugation from the conditioned medium of DiFi cells, a human colorectal cancer cell line. EGFR and the exosomal marker, CD9, were detected on individual DiFi exosomes by FAVS; moreover, both markers were identified by high-resolution stochastic optical reconstruction microscopy on individual, approximately 100 nm vesicles from flow-sorted EGFR/CD9 double-positive exosomes. We present evidence that the activation state of EGFR can be assessed in DiFi-derived exosomes using a monoclonal antibody (mAb) that recognizes “conformationally active” EGFR (mAb 806). Using human antigen-specific antibodies, FAVS was able to detect human EGFR and CD9 on exosomes isolated from the plasma of athymic nude mice bearing DiFi tumour xenografts. Multicolour FAVS was used to simultaneously identify CD9, EGFR and an EGFR ligand, amphiregulin (AREG), on human plasma-derived exosomes from 3 normal individuals. These studies demonstrate the feasibility of FAVS to both analyse and sort individual exosomes based on specific cell-surface markers. We propose that FAVS may be a useful tool to monitor EGFR and AREG in circulating exosomes from individuals with colorectal cancer and possibly other solid tumours.
Collapse
Affiliation(s)
- James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - H Charles Manning
- Center for Molecular Probes, Vanderbilt University Institute of Imaging Science, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Josiah Ochieng
- Departments of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Jeffrey L Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Nashville, TN, USA.,Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Nashville, TN, USA.,Department of Veterans Affairs Medical Center, Nashville, TN, USA;
| |
Collapse
|
25
|
Lopatina T, Gai C, Deregibus MC, Kholia S, Camussi G. Cross Talk between Cancer and Mesenchymal Stem Cells through Extracellular Vesicles Carrying Nucleic Acids. Front Oncol 2016; 6:125. [PMID: 27242964 PMCID: PMC4876347 DOI: 10.3389/fonc.2016.00125] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are considered to be a novel complex mechanism of cell communication within the tumor microenvironment. EVs may act as vehicles for transcription factors and nucleic acids inducing epigenetic changes in recipient cells. Since tumor EVs may be present in patient biological fluids, it is important to investigate their function and molecular mechanisms of action. It has been shown that tumor cells release EVs, which are capable of regulating cell apoptosis, proliferation, invasion, and epithelial-mesenchymal transition, as well as to suppress activity of immune cells, to enhance angiogenesis, and to prepare a favorable microenvironment for metastasis. On the other hand, EVs derived from stromal cells, such as mesenchymal stem cells (MSCs), may influence the phenotype of tumor cells through reciprocal cross talk greatly influenced by the transcription factors and nucleic acids they carry. In particular, non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs, have recently been identified as the main candidates for the phenotypic changes induced in the recipient cells by EVs. ncRNAs, which are important regulators of mRNA and protein expression, can function either as tumor suppressors or as oncogenes, depending on their targets. Herein, we have attempted to revise actual evidence reported in the literature on the role of EVs in tumor biology with particular regard to the cross talk of ncRNAs between cancer cells and MSCs.
Collapse
Affiliation(s)
- Tatiana Lopatina
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Chiara Gai
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Maria Chiara Deregibus
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Sharad Kholia
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino , Torino , Italy
| |
Collapse
|
26
|
Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 2016; 4:e1134415. [PMID: 27358751 DOI: 10.1080/21688370.2015.1134415] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022] Open
Abstract
In plant cells, nanoparticles containing miRNA, bioactive lipids and proteins serve as extracellular messengers to mediate cell-cell communication in a manner similar to the exosomes secreted by mammalian cells. Notably, such nanoparticles are edible. Moreover, given the proper origin and cargo, plant derived edible nanoparticles could function in interspecies communication and may serve as natural therapeutics against a variety of diseases. In addition, nanoparticles made of plant-derived lipids may be used to efficiently deliver specific drugs. Plant derived edible nanoparticles could be more easily scaled up for mass production, compared to synthetic nanoparticles. In this review, we discuss recent significant developments pertaining to plant derived edible nanoparticles and provide insight into the use of plants as a bio-renewable, sustainable, diversified platform for the production of therapeutic nanoparticles.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Changlong Xu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
27
|
Lakhter AJ, Sims EK. Minireview: Emerging Roles for Extracellular Vesicles in Diabetes and Related Metabolic Disorders. Mol Endocrinol 2015; 29:1535-48. [PMID: 26393296 PMCID: PMC4627606 DOI: 10.1210/me.2015-1206] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs), membrane-contained vesicles released by most cell types, have attracted a large amount of research interest over the past decade. Because of their ability to transfer cargo via regulated processes, causing functional impacts on recipient cells, these structures may play important roles in cell-cell communication and have implications in the physiology of numerous organ systems. In addition, EVs have been described in most human biofluids and have wide potential as relatively noninvasive biomarkers of various pathologic conditions. Specifically, EVs produced by the pancreatic β-cell have been demonstrated to regulate physiologic and pathologic responses to β-cell stress, including β-cell proliferation and apoptosis. β-Cell EVs are also capable of interacting with immune cells and may contribute to the activation of autoimmune processes that trigger or propagate β-cell inflammation and destruction during the development of diabetes. EVs from adipose tissue have been shown to contribute to the development of the chronic inflammation and insulin resistance associated with obesity and metabolic syndrome via interactions with other adipose, liver, and muscle cells. Circulating EVs may also serve as biomarkers for metabolic derangements and complications associated with diabetes. This minireview describes the properties of EVs in general, followed by a more focused review of the literature describing EVs affecting the β-cell, β-cell autoimmunity, and the development of insulin resistance, which all have the potential to affect development of type 1 or type 2 diabetes.
Collapse
Affiliation(s)
- Alexander J Lakhter
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| | - Emily K Sims
- Department of Pediatrics (A.J.L., E.K.S.), Center for Diabetes and Metabolic Diseases, and Section of Pediatric Endocrinology and Diabetology (E.K.S.), Indiana University, Indianapolis, Indiana 46202
| |
Collapse
|